具有Holling II型响应函数的趋化器中捕食者-猎物模型

IF 0.4 Q4 MATHEMATICS, APPLIED
T. Bolger, Brydon Eastman, Madeleine Hill, G. Wolkowicz
{"title":"具有Holling II型响应函数的趋化器中捕食者-猎物模型","authors":"T. Bolger, Brydon Eastman, Madeleine Hill, G. Wolkowicz","doi":"10.5206/mase/10842","DOIUrl":null,"url":null,"abstract":"A model of predator-prey interaction in a chemostat with Holling Type II functional and numerical response functions of the Monod or Michaelis-Menten form is considered. It is proved that local asymptotic stability of the coexistence equilibrium implies that it is globally asymptotically stable. It is also shown that when the coexistence equilibrium exists but is unstable, solutions converge to a unique, orbitally asymptotically stable periodic orbit. Thus the range of the dynamics of the chemostat predator-prey model is the same as for the analogous classical Rosenzweig-MacArthur predator-prey model with Holling Type II functional response. An extension that applies to other functional rsponses is also given.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Predator-Prey model in the chemostat with Holling Type II response function\",\"authors\":\"T. Bolger, Brydon Eastman, Madeleine Hill, G. Wolkowicz\",\"doi\":\"10.5206/mase/10842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model of predator-prey interaction in a chemostat with Holling Type II functional and numerical response functions of the Monod or Michaelis-Menten form is considered. It is proved that local asymptotic stability of the coexistence equilibrium implies that it is globally asymptotically stable. It is also shown that when the coexistence equilibrium exists but is unstable, solutions converge to a unique, orbitally asymptotically stable periodic orbit. Thus the range of the dynamics of the chemostat predator-prey model is the same as for the analogous classical Rosenzweig-MacArthur predator-prey model with Holling Type II functional response. An extension that applies to other functional rsponses is also given.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/10842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/10842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

考虑了具有Holling II型泛函和Monod或Michaelis-Menten形式的数值响应函数的趋化器中捕食者-猎物相互作用模型。证明了共存平衡点的局部渐近稳定性意味着它是全局渐近稳定的。还证明了当共存平衡存在但不稳定时,解收敛于唯一的、轨道渐近稳定的周期轨道。因此,趋化调节捕食者-猎物模型的动力学范围与具有Holling II型功能反应的类似的经典Rosenzweig-MacArthur捕食者-猎物模型相同。还给出了适用于其他功能响应的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Predator-Prey model in the chemostat with Holling Type II response function
A model of predator-prey interaction in a chemostat with Holling Type II functional and numerical response functions of the Monod or Michaelis-Menten form is considered. It is proved that local asymptotic stability of the coexistence equilibrium implies that it is globally asymptotically stable. It is also shown that when the coexistence equilibrium exists but is unstable, solutions converge to a unique, orbitally asymptotically stable periodic orbit. Thus the range of the dynamics of the chemostat predator-prey model is the same as for the analogous classical Rosenzweig-MacArthur predator-prey model with Holling Type II functional response. An extension that applies to other functional rsponses is also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信