{"title":"细粒含量对生物聚合物处理低塑性土壤强度和刚度的影响","authors":"R. Gedela, B. Indraratna, S. Medawela, T. Nguyen","doi":"10.56295/agj5811","DOIUrl":null,"url":null,"abstract":"The use of biopolymers to enhance the engineering properties of soil has received increasing attention in recent years, however, the interactive role that biopolymers and the fines content of the soil play in governing the geotechnical parameters still requires insightful investigation, in relation to chemical soil treatment that can be ecologically detrimental. This paper examines the combined effects of Xanthan Gum (XG) derived from specific bacterial strains and the presence of clay fines content (kaolin) on the strength and stiffness of low plasticity soils, with special reference of cyclic traffic (road and rail) loading. In this study, fine sand is mixed with different contents of kaolin, whereby laboratory compression and tensile tests were conducted on natural (untreated) and XG-treated soil specimens. The results indicate that soil strength can be enhanced significantly when XG is added, however the effectiveness is a function of the kaolin content (KC). At an optimum XG content of 2% and a fines content increasing from 5% to 30%, split tensile strength increases from 230 to 750 kPa,while the unconfined compressive strength rises from 1.4 to 7.9 MPa, respectively. For XG content between 0.5% and 2%, the small strain stiffness of treated soil increases fourfold from 206 to 854 MPa.","PeriodicalId":43619,"journal":{"name":"Australian Geomechanics Journal","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects Of Fines Content On The Strength And Stiffness Of Biopolymer Treated Low-Plasticity Soils\",\"authors\":\"R. Gedela, B. Indraratna, S. Medawela, T. Nguyen\",\"doi\":\"10.56295/agj5811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of biopolymers to enhance the engineering properties of soil has received increasing attention in recent years, however, the interactive role that biopolymers and the fines content of the soil play in governing the geotechnical parameters still requires insightful investigation, in relation to chemical soil treatment that can be ecologically detrimental. This paper examines the combined effects of Xanthan Gum (XG) derived from specific bacterial strains and the presence of clay fines content (kaolin) on the strength and stiffness of low plasticity soils, with special reference of cyclic traffic (road and rail) loading. In this study, fine sand is mixed with different contents of kaolin, whereby laboratory compression and tensile tests were conducted on natural (untreated) and XG-treated soil specimens. The results indicate that soil strength can be enhanced significantly when XG is added, however the effectiveness is a function of the kaolin content (KC). At an optimum XG content of 2% and a fines content increasing from 5% to 30%, split tensile strength increases from 230 to 750 kPa,while the unconfined compressive strength rises from 1.4 to 7.9 MPa, respectively. For XG content between 0.5% and 2%, the small strain stiffness of treated soil increases fourfold from 206 to 854 MPa.\",\"PeriodicalId\":43619,\"journal\":{\"name\":\"Australian Geomechanics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Geomechanics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56295/agj5811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Geomechanics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56295/agj5811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Effects Of Fines Content On The Strength And Stiffness Of Biopolymer Treated Low-Plasticity Soils
The use of biopolymers to enhance the engineering properties of soil has received increasing attention in recent years, however, the interactive role that biopolymers and the fines content of the soil play in governing the geotechnical parameters still requires insightful investigation, in relation to chemical soil treatment that can be ecologically detrimental. This paper examines the combined effects of Xanthan Gum (XG) derived from specific bacterial strains and the presence of clay fines content (kaolin) on the strength and stiffness of low plasticity soils, with special reference of cyclic traffic (road and rail) loading. In this study, fine sand is mixed with different contents of kaolin, whereby laboratory compression and tensile tests were conducted on natural (untreated) and XG-treated soil specimens. The results indicate that soil strength can be enhanced significantly when XG is added, however the effectiveness is a function of the kaolin content (KC). At an optimum XG content of 2% and a fines content increasing from 5% to 30%, split tensile strength increases from 230 to 750 kPa,while the unconfined compressive strength rises from 1.4 to 7.9 MPa, respectively. For XG content between 0.5% and 2%, the small strain stiffness of treated soil increases fourfold from 206 to 854 MPa.