{"title":"一种基于群组智能的物联网设备智能优化方法","authors":"Ke Wang;Zheming Yang;Bing Liang;Wen Ji","doi":"10.1108/IJCS-03-2021-0007","DOIUrl":null,"url":null,"abstract":"Purpose – The rapid development of 5G technology brings the expansion of the internet of things (IoT). A large number of devices in the IoT work independently, leading to difficulties in management. This study aims to optimize the member structure of the IoT so the members in it can work more efficiently. Design/methodology/approach – In this paper, the authors consider from the perspective of crowd science, combining genetic algorithms and crowd intelligence together to optimize the total intelligence of the IoT. Computing, caching and communication capacity are used as the basis of the intelligence according to the related work, and the device correlation and distance factors are used to measure the improvement level of the intelligence. Finally, they use genetic algorithm to select a collaborative state for the IoT devices. Findings – Experimental results demonstrate that the intelligence optimization method in this paper can improve the IoT intelligence level up to ten times than original level. Originality/value – This paper is the first study that solves the problem of device collaboration in the IoT scenario based on the scientific background of crowd intelligence. The intelligence optimization method works well in the IoT scenario, and it also has potential in other scenarios of crowd network.","PeriodicalId":32381,"journal":{"name":"International Journal of Crowd Science","volume":"5 3","pages":"218-227"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9736195/9826703/09826707.pdf","citationCount":"1","resultStr":"{\"title\":\"An intelligence optimization method based on crowd intelligence for IoT devices\",\"authors\":\"Ke Wang;Zheming Yang;Bing Liang;Wen Ji\",\"doi\":\"10.1108/IJCS-03-2021-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose – The rapid development of 5G technology brings the expansion of the internet of things (IoT). A large number of devices in the IoT work independently, leading to difficulties in management. This study aims to optimize the member structure of the IoT so the members in it can work more efficiently. Design/methodology/approach – In this paper, the authors consider from the perspective of crowd science, combining genetic algorithms and crowd intelligence together to optimize the total intelligence of the IoT. Computing, caching and communication capacity are used as the basis of the intelligence according to the related work, and the device correlation and distance factors are used to measure the improvement level of the intelligence. Finally, they use genetic algorithm to select a collaborative state for the IoT devices. Findings – Experimental results demonstrate that the intelligence optimization method in this paper can improve the IoT intelligence level up to ten times than original level. Originality/value – This paper is the first study that solves the problem of device collaboration in the IoT scenario based on the scientific background of crowd intelligence. The intelligence optimization method works well in the IoT scenario, and it also has potential in other scenarios of crowd network.\",\"PeriodicalId\":32381,\"journal\":{\"name\":\"International Journal of Crowd Science\",\"volume\":\"5 3\",\"pages\":\"218-227\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9736195/9826703/09826707.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Crowd Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9826707/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Crowd Science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9826707/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
An intelligence optimization method based on crowd intelligence for IoT devices
Purpose – The rapid development of 5G technology brings the expansion of the internet of things (IoT). A large number of devices in the IoT work independently, leading to difficulties in management. This study aims to optimize the member structure of the IoT so the members in it can work more efficiently. Design/methodology/approach – In this paper, the authors consider from the perspective of crowd science, combining genetic algorithms and crowd intelligence together to optimize the total intelligence of the IoT. Computing, caching and communication capacity are used as the basis of the intelligence according to the related work, and the device correlation and distance factors are used to measure the improvement level of the intelligence. Finally, they use genetic algorithm to select a collaborative state for the IoT devices. Findings – Experimental results demonstrate that the intelligence optimization method in this paper can improve the IoT intelligence level up to ten times than original level. Originality/value – This paper is the first study that solves the problem of device collaboration in the IoT scenario based on the scientific background of crowd intelligence. The intelligence optimization method works well in the IoT scenario, and it also has potential in other scenarios of crowd network.