球面上极小超曲面的等周不等式

IF 0.7 3区 数学 Q2 MATHEMATICS
Fagui Li, Niang-Shin Chen
{"title":"球面上极小超曲面的等周不等式","authors":"Fagui Li, Niang-Shin Chen","doi":"10.2140/pjm.2023.324.143","DOIUrl":null,"url":null,"abstract":"Let $ M^n$ be a closed immersed minimal hypersurface in the unit sphere $\\mathbb{S}^{n+1}$. We establish a special isoperimetric inequality of $M^n$. As an application, if the scalar curvature of $ M^n$ is constant, then we get a uniform lower bound independent of $M^n$ for the isoperimetric inequality. In addition, we obtain an inequality between Cheeger's isoperimetric constant and the volume of the nodal set of the height function.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An isoperimetric inequality of minimal hypersurfaces in spheres\",\"authors\":\"Fagui Li, Niang-Shin Chen\",\"doi\":\"10.2140/pjm.2023.324.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $ M^n$ be a closed immersed minimal hypersurface in the unit sphere $\\\\mathbb{S}^{n+1}$. We establish a special isoperimetric inequality of $M^n$. As an application, if the scalar curvature of $ M^n$ is constant, then we get a uniform lower bound independent of $M^n$ for the isoperimetric inequality. In addition, we obtain an inequality between Cheeger's isoperimetric constant and the volume of the nodal set of the height function.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.324.143\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.324.143","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$ M^n$是单位球$\mathbb{S}^{n+1}$上的一个封闭浸入极小超曲面。我们建立了一个特殊的M^n的等周不等式。作为一个应用,如果M^n$的标量曲率是常数,那么我们得到了一个与M^n$无关的统一下界。此外,我们还得到了Cheeger等周常数与高度函数节点集体积之间的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An isoperimetric inequality of minimal hypersurfaces in spheres
Let $ M^n$ be a closed immersed minimal hypersurface in the unit sphere $\mathbb{S}^{n+1}$. We establish a special isoperimetric inequality of $M^n$. As an application, if the scalar curvature of $ M^n$ is constant, then we get a uniform lower bound independent of $M^n$ for the isoperimetric inequality. In addition, we obtain an inequality between Cheeger's isoperimetric constant and the volume of the nodal set of the height function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信