间歇式浮选过程实时监测与控制的机器视觉系统的开发

Q1 Earth and Planetary Sciences
A. Jahedsaravani , M. Massinaei , M.H. Marhaban
{"title":"间歇式浮选过程实时监测与控制的机器视觉系统的开发","authors":"A. Jahedsaravani ,&nbsp;M. Massinaei ,&nbsp;M.H. Marhaban","doi":"10.1016/j.minpro.2017.07.011","DOIUrl":null,"url":null,"abstract":"<div><p><span>Substantial progresses have been made over the past decade in using machine vision for automatic control of the froth flotation<span> process. A machine vision system is able to extract the visual features from the captured froth images and present the results to process control systems. The current research work is concerned with the development and implementation of a machine vision system for real time monitoring and control of a batch flotation system. The proposed model-based control system comprises two in-series models connecting the process variables to the froth features and the metallurgical parameters along with a stabilizing fuzzy controller. The results indicate the developed machine vision based control system is able to accurately predict the metallurgical parameters of the existing batch flotation system from the extracted froth features and efficiently maintain them at their set-points despite step disturbances in the process variables. Furthermore, the proposed control system leads to higher target values for the metallurgical parameters than the previously developed system (R</span></span><sub>Cu</sub> <!-->=<!--> <!-->91.1<!--> <!-->%<!--> <!-->;<!--> <!-->G<sub>Cu</sub> <!-->=<!--> <!-->11.2% vs. R<sub>Cu</sub> <!-->=<!--> <!-->87.6<!--> <!-->%<!--> <!-->;<!--> <!-->G<sub>Cu</sub> <!-->=<!--> <!-->8.1%).</p></div>","PeriodicalId":14022,"journal":{"name":"International Journal of Mineral Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.minpro.2017.07.011","citationCount":"17","resultStr":"{\"title\":\"Development of a machine vision system for real-time monitoring and control of batch flotation process\",\"authors\":\"A. Jahedsaravani ,&nbsp;M. Massinaei ,&nbsp;M.H. Marhaban\",\"doi\":\"10.1016/j.minpro.2017.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Substantial progresses have been made over the past decade in using machine vision for automatic control of the froth flotation<span> process. A machine vision system is able to extract the visual features from the captured froth images and present the results to process control systems. The current research work is concerned with the development and implementation of a machine vision system for real time monitoring and control of a batch flotation system. The proposed model-based control system comprises two in-series models connecting the process variables to the froth features and the metallurgical parameters along with a stabilizing fuzzy controller. The results indicate the developed machine vision based control system is able to accurately predict the metallurgical parameters of the existing batch flotation system from the extracted froth features and efficiently maintain them at their set-points despite step disturbances in the process variables. Furthermore, the proposed control system leads to higher target values for the metallurgical parameters than the previously developed system (R</span></span><sub>Cu</sub> <!-->=<!--> <!-->91.1<!--> <!-->%<!--> <!-->;<!--> <!-->G<sub>Cu</sub> <!-->=<!--> <!-->11.2% vs. R<sub>Cu</sub> <!-->=<!--> <!-->87.6<!--> <!-->%<!--> <!-->;<!--> <!-->G<sub>Cu</sub> <!-->=<!--> <!-->8.1%).</p></div>\",\"PeriodicalId\":14022,\"journal\":{\"name\":\"International Journal of Mineral Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.minpro.2017.07.011\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mineral Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301751617301564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mineral Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301751617301564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 17

摘要

在过去的十年中,机器视觉在泡沫浮选过程自动控制方面取得了实质性的进展。机器视觉系统能够从捕获的泡沫图像中提取视觉特征,并将结果呈现给过程控制系统。目前的研究工作是开发和实现一种用于批量浮选系统实时监测和控制的机器视觉系统。所提出的基于模型的控制系统包括两个串联模型,连接过程变量与泡沫特征和冶金参数,以及一个稳定模糊控制器。结果表明,所开发的基于机器视觉的控制系统能够根据提取的泡沫特征准确预测现有间歇浮选系统的冶金参数,并在过程变量阶跃干扰的情况下有效地将其维持在设定值上。此外,与先前开发的系统相比,所提出的控制系统可获得更高的冶金参数目标值(RCu = 91.1%;GCu = 11.2% vs. RCu = 87.6%;GCu = 8.1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a machine vision system for real-time monitoring and control of batch flotation process

Substantial progresses have been made over the past decade in using machine vision for automatic control of the froth flotation process. A machine vision system is able to extract the visual features from the captured froth images and present the results to process control systems. The current research work is concerned with the development and implementation of a machine vision system for real time monitoring and control of a batch flotation system. The proposed model-based control system comprises two in-series models connecting the process variables to the froth features and the metallurgical parameters along with a stabilizing fuzzy controller. The results indicate the developed machine vision based control system is able to accurately predict the metallurgical parameters of the existing batch flotation system from the extracted froth features and efficiently maintain them at their set-points despite step disturbances in the process variables. Furthermore, the proposed control system leads to higher target values for the metallurgical parameters than the previously developed system (RCu = 91.1 % ; GCu = 11.2% vs. RCu = 87.6 % ; GCu = 8.1%).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mineral Processing
International Journal of Mineral Processing 工程技术-工程:化工
CiteScore
3.02
自引率
0.00%
发文量
0
审稿时长
11.1 months
期刊介绍: International Journal of Mineral Processing has been discontinued as of the end of 2017, due to the merger with Minerals Engineering. The International Journal of Mineral Processing covers aspects of the processing of mineral resources such as: Metallic and non-metallic ores, coals, and secondary resources. Topics dealt with include: Geometallurgy, comminution, sizing, classification (in air and water), gravity concentration, flotation, electric and magnetic separation, thickening, filtering, drying, and (bio)hydrometallurgy (when applied to low-grade raw materials), control and automation, waste treatment and disposal. In addition to research papers, the journal publishes review articles, technical notes, and letters to the editor..
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信