A. Alakhras, H. M. El Khair, M. Habib, T. Odeh, H. Idriss
{"title":"涂覆银胶体纳米粒子的透明玻璃作为抗冠状病毒表面的候选材料——展望","authors":"A. Alakhras, H. M. El Khair, M. Habib, T. Odeh, H. Idriss","doi":"10.15251/jobm.2022.141.19","DOIUrl":null,"url":null,"abstract":"Silver nanoparticles have a wide range of anti-bacterial, anti-fungal, and anti-viral effects due to their unique properties. In this work, citrate reduction has been employed to fabricate silver colloidal nanoparticles with 12 nm. The plasmon resonance spectra of nanoscopic silver particles adsorbed onto transparent electrodes in contact with various electrolyte solutions and concentrations of NaC1O4, KPF6, and NaCl were studied. Potentials were controlled with a galvanostat, and UV/visible spectrophotometer was employed to obtain the optical spectra. The results showed the electrolyte identity, potential-induced redshifts, and damping is most pronounced for NaCl, whereas spectral changes are weaker in the cases of NaC1O4 and KPF6 solutions. Hence, due to the noble physical and biological properties of silver colloid nanoparticles, it becomes a great candidate and promising in the future to be used as an anti-coronavirus surface.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transparent glass coated with silver colloid nanoparticles candidate as an antiCoronavirus surface - Perspective\",\"authors\":\"A. Alakhras, H. M. El Khair, M. Habib, T. Odeh, H. Idriss\",\"doi\":\"10.15251/jobm.2022.141.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silver nanoparticles have a wide range of anti-bacterial, anti-fungal, and anti-viral effects due to their unique properties. In this work, citrate reduction has been employed to fabricate silver colloidal nanoparticles with 12 nm. The plasmon resonance spectra of nanoscopic silver particles adsorbed onto transparent electrodes in contact with various electrolyte solutions and concentrations of NaC1O4, KPF6, and NaCl were studied. Potentials were controlled with a galvanostat, and UV/visible spectrophotometer was employed to obtain the optical spectra. The results showed the electrolyte identity, potential-induced redshifts, and damping is most pronounced for NaCl, whereas spectral changes are weaker in the cases of NaC1O4 and KPF6 solutions. Hence, due to the noble physical and biological properties of silver colloid nanoparticles, it becomes a great candidate and promising in the future to be used as an anti-coronavirus surface.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15251/jobm.2022.141.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jobm.2022.141.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transparent glass coated with silver colloid nanoparticles candidate as an antiCoronavirus surface - Perspective
Silver nanoparticles have a wide range of anti-bacterial, anti-fungal, and anti-viral effects due to their unique properties. In this work, citrate reduction has been employed to fabricate silver colloidal nanoparticles with 12 nm. The plasmon resonance spectra of nanoscopic silver particles adsorbed onto transparent electrodes in contact with various electrolyte solutions and concentrations of NaC1O4, KPF6, and NaCl were studied. Potentials were controlled with a galvanostat, and UV/visible spectrophotometer was employed to obtain the optical spectra. The results showed the electrolyte identity, potential-induced redshifts, and damping is most pronounced for NaCl, whereas spectral changes are weaker in the cases of NaC1O4 and KPF6 solutions. Hence, due to the noble physical and biological properties of silver colloid nanoparticles, it becomes a great candidate and promising in the future to be used as an anti-coronavirus surface.