基于A-star算法的越野环境下自动驾驶汽车全局路径规划

Q4 Engineering
Qinghe Liu, Lijun Zhao, Zhibin Tan, Wen Chen
{"title":"基于A-star算法的越野环境下自动驾驶汽车全局路径规划","authors":"Qinghe Liu, Lijun Zhao, Zhibin Tan, Wen Chen","doi":"10.1504/IJVAS.2017.10008214","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of global path planning for autonomous vehicles in off-road environment, an improved A-star path-searching algorithm considering the vehicle powertrain and fuel economy performance is proposed in this paper. First, we discuss the digital elevation model (DEM) map adopted to describe off-road earth surface generally. Then, we define three important concepts regarding path planners on the basis of the DEM map. Second, we design a novel comprehensive cost function for A-star algorithm with shorter Euclidean distance and less fuel consumption. At last, the algorithm is simulated on a DEM map through several different missions. The simulation results show that the proposed algorithm is effective and robust in finding global path in complex terrains.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Global path planning for autonomous vehicles in off-road environment via an A-star algorithm\",\"authors\":\"Qinghe Liu, Lijun Zhao, Zhibin Tan, Wen Chen\",\"doi\":\"10.1504/IJVAS.2017.10008214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problem of global path planning for autonomous vehicles in off-road environment, an improved A-star path-searching algorithm considering the vehicle powertrain and fuel economy performance is proposed in this paper. First, we discuss the digital elevation model (DEM) map adopted to describe off-road earth surface generally. Then, we define three important concepts regarding path planners on the basis of the DEM map. Second, we design a novel comprehensive cost function for A-star algorithm with shorter Euclidean distance and less fuel consumption. At last, the algorithm is simulated on a DEM map through several different missions. The simulation results show that the proposed algorithm is effective and robust in finding global path in complex terrains.\",\"PeriodicalId\":39322,\"journal\":{\"name\":\"International Journal of Vehicle Autonomous Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVAS.2017.10008214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVAS.2017.10008214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 24

摘要

为了解决越野环境下自动驾驶汽车的全局路径规划问题,本文提出了一种考虑车辆动力总成和燃油经济性的改进A星路径搜索算法。首先,我们讨论了用于描述越野地表的数字高程模型(DEM)地图。然后,在DEM地图的基础上,定义了路径规划的三个重要概念。其次,我们为a星算法设计了一个新的综合成本函数,该函数具有较短的欧氏距离和较低的燃料消耗。最后,通过几个不同的任务在DEM地图上对该算法进行了仿真。仿真结果表明,该算法在复杂地形下寻找全局路径是有效和稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global path planning for autonomous vehicles in off-road environment via an A-star algorithm
In order to solve the problem of global path planning for autonomous vehicles in off-road environment, an improved A-star path-searching algorithm considering the vehicle powertrain and fuel economy performance is proposed in this paper. First, we discuss the digital elevation model (DEM) map adopted to describe off-road earth surface generally. Then, we define three important concepts regarding path planners on the basis of the DEM map. Second, we design a novel comprehensive cost function for A-star algorithm with shorter Euclidean distance and less fuel consumption. At last, the algorithm is simulated on a DEM map through several different missions. The simulation results show that the proposed algorithm is effective and robust in finding global path in complex terrains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Autonomous Systems
International Journal of Vehicle Autonomous Systems Engineering-Automotive Engineering
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: The IJVAS provides an international forum and refereed reference in the field of vehicle autonomous systems research and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信