{"title":"helm图距离矩阵的Moore-Penrose逆","authors":"I. Jeyaraman, T. Divyadevi, R. Azhagendran","doi":"10.13001/ela.2023.7465","DOIUrl":null,"url":null,"abstract":"In this paper, we give necessary and sufficient conditions for a real symmetric matrix and, in particular, for the distance matrix $D(H_n)$ of a helm graph $H_n$ to have their Moore-Penrose inverses as the sum of a symmetric Laplacian-like matrix and a rank-one matrix. As a consequence, we present a short proof of the inverse formula, given by Goel (Linear Algebra Appl. 621:86-104, 2021), for $D(H_n)$ when $n$ is even. Further, we derive a formula for the Moore-Penrose inverse of singular $D(H_n)$ that is analogous to the formula for $D(H_n)^{-1}$. Precisely, if $n$ is odd, we find a symmetric positive semi-definite Laplacian-like matrix $L$ of order $2n-1$ and a vector $\\mathbf{w}\\in \\mathbb{R}^{2n-1}$ such that\\begin{eqnarray*}D(H_n)^{\\dagger} = -\\frac{1}{2}L +\\frac{4}{3(n-1)}\\mathbf{w}\\mathbf{w^{\\prime}},\\end{eqnarray*}where the rank of $L$ is $2n-3$. We also investigate the inertia of $D(H_n)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Moore-Penrose inverse of the distance matrix of a helm graph\",\"authors\":\"I. Jeyaraman, T. Divyadevi, R. Azhagendran\",\"doi\":\"10.13001/ela.2023.7465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give necessary and sufficient conditions for a real symmetric matrix and, in particular, for the distance matrix $D(H_n)$ of a helm graph $H_n$ to have their Moore-Penrose inverses as the sum of a symmetric Laplacian-like matrix and a rank-one matrix. As a consequence, we present a short proof of the inverse formula, given by Goel (Linear Algebra Appl. 621:86-104, 2021), for $D(H_n)$ when $n$ is even. Further, we derive a formula for the Moore-Penrose inverse of singular $D(H_n)$ that is analogous to the formula for $D(H_n)^{-1}$. Precisely, if $n$ is odd, we find a symmetric positive semi-definite Laplacian-like matrix $L$ of order $2n-1$ and a vector $\\\\mathbf{w}\\\\in \\\\mathbb{R}^{2n-1}$ such that\\\\begin{eqnarray*}D(H_n)^{\\\\dagger} = -\\\\frac{1}{2}L +\\\\frac{4}{3(n-1)}\\\\mathbf{w}\\\\mathbf{w^{\\\\prime}},\\\\end{eqnarray*}where the rank of $L$ is $2n-3$. We also investigate the inertia of $D(H_n)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2023.7465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Moore-Penrose inverse of the distance matrix of a helm graph
In this paper, we give necessary and sufficient conditions for a real symmetric matrix and, in particular, for the distance matrix $D(H_n)$ of a helm graph $H_n$ to have their Moore-Penrose inverses as the sum of a symmetric Laplacian-like matrix and a rank-one matrix. As a consequence, we present a short proof of the inverse formula, given by Goel (Linear Algebra Appl. 621:86-104, 2021), for $D(H_n)$ when $n$ is even. Further, we derive a formula for the Moore-Penrose inverse of singular $D(H_n)$ that is analogous to the formula for $D(H_n)^{-1}$. Precisely, if $n$ is odd, we find a symmetric positive semi-definite Laplacian-like matrix $L$ of order $2n-1$ and a vector $\mathbf{w}\in \mathbb{R}^{2n-1}$ such that\begin{eqnarray*}D(H_n)^{\dagger} = -\frac{1}{2}L +\frac{4}{3(n-1)}\mathbf{w}\mathbf{w^{\prime}},\end{eqnarray*}where the rank of $L$ is $2n-3$. We also investigate the inertia of $D(H_n)$.