一种虚拟结,其虚拟解结数等于1,并有一个$n$-缠绕的序列

Pub Date : 2021-06-04 DOI:10.2969/JMSJ/84478447
Y. Ohyama, Migiwa Sakurai
{"title":"一种虚拟结,其虚拟解结数等于1,并有一个$n$-缠绕的序列","authors":"Y. Ohyama, Migiwa Sakurai","doi":"10.2969/JMSJ/84478447","DOIUrl":null,"url":null,"abstract":"Satoh and Taniguchi introduced the n-writhe Jn for each non-zero integer n, which is an integer invariant for virtual knots. The sequence of n-writhes {Jn}n̸=0 of a virtual knot K satisfies ∑ n̸=0 nJn(K) = 0. They showed that for any sequence of integers {cn}n̸=0 with ∑ n̸=0 ncn = 0, there exists a virtual knot K with Jn(K) = cn for any n ̸= 0. It is obvious that the virtualization of a real crossing is an unknotting operation for virtual knots. The unknotting number by the virtualization is called the virtual unknotting number and is denoted by uv . In this paper, we show that if {cn}n̸=0 is a sequence of integers with ∑ n̸=0 ncn = 0, then there exists a virtual knot K such that uv(K) = 1 and Jn(K) = cn for any n ̸= 0.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A virtual knot whose virtual unknotting number equals one and a sequence of $n$-writhes\",\"authors\":\"Y. Ohyama, Migiwa Sakurai\",\"doi\":\"10.2969/JMSJ/84478447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satoh and Taniguchi introduced the n-writhe Jn for each non-zero integer n, which is an integer invariant for virtual knots. The sequence of n-writhes {Jn}n̸=0 of a virtual knot K satisfies ∑ n̸=0 nJn(K) = 0. They showed that for any sequence of integers {cn}n̸=0 with ∑ n̸=0 ncn = 0, there exists a virtual knot K with Jn(K) = cn for any n ̸= 0. It is obvious that the virtualization of a real crossing is an unknotting operation for virtual knots. The unknotting number by the virtualization is called the virtual unknotting number and is denoted by uv . In this paper, we show that if {cn}n̸=0 is a sequence of integers with ∑ n̸=0 ncn = 0, then there exists a virtual knot K such that uv(K) = 1 and Jn(K) = cn for any n ̸= 0.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/JMSJ/84478447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/JMSJ/84478447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Satoh和Taniguchi为每个非零整数n引入了n-扭体Jn,它是虚拟结的整数不变量。n-扭体的序列{Jn}n虚拟结K的∑n̸=0 nJn(K)=0。他们证明,对于任何整数序列{cn}n∑n̸=0 ncn=0,对于任意n \824=0,存在Jn(K)=cn的虚拟结K。很明显,真实交叉的虚拟化对于虚拟节点来说是一种未知的操作。虚拟化的unknoting数称为虚拟unknotiing数,用uv表示。在本文中,我们证明了如果{cn}n̸=0是一个∑n=0ncn=0的整数序列,则存在一个虚拟结K,使得对于任何n=0,uv(K)=1和Jn(K)=cn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A virtual knot whose virtual unknotting number equals one and a sequence of $n$-writhes
Satoh and Taniguchi introduced the n-writhe Jn for each non-zero integer n, which is an integer invariant for virtual knots. The sequence of n-writhes {Jn}n̸=0 of a virtual knot K satisfies ∑ n̸=0 nJn(K) = 0. They showed that for any sequence of integers {cn}n̸=0 with ∑ n̸=0 ncn = 0, there exists a virtual knot K with Jn(K) = cn for any n ̸= 0. It is obvious that the virtualization of a real crossing is an unknotting operation for virtual knots. The unknotting number by the virtualization is called the virtual unknotting number and is denoted by uv . In this paper, we show that if {cn}n̸=0 is a sequence of integers with ∑ n̸=0 ncn = 0, then there exists a virtual knot K such that uv(K) = 1 and Jn(K) = cn for any n ̸= 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信