结合蔗渣发酵的酵母微生物燃料电池降COD及发电性能研究

IF 1.3 Q3 ENGINEERING, CHEMICAL
M. Christwardana, J. Joelianingsih, Linda Aliffia Yoshi
{"title":"结合蔗渣发酵的酵母微生物燃料电池降COD及发电性能研究","authors":"M. Christwardana, J. Joelianingsih, Linda Aliffia Yoshi","doi":"10.9767/BCREC.16.3.9739.446-458","DOIUrl":null,"url":null,"abstract":"The purpose of this analysis is to evaluate the efficiency of the Microbial Fuel Cell (MFC) system incorporated with the fermentation process, with the aim of reducing COD and generating electricity, using sugarcane bagasse extract as a substrate, in the presence and absence of sugarcane fibers. There is a possibility of turning bagasse extract into renewable bioenergy to promote the sustainability of the environment and energy. As a result, the integration of liquid fermentation (LF) with MFC has improved efficiency compared to semi-solid state fermentation (S-SSF). The maximum power generated was 14.88 mW/m2, with an average COD removal of 39.68% per cycle. The variation margin of the liquid fermentation pH readings remained slightly decrease, with a slight deflection of +0.14 occurring from 4.33. With the absence of bagasse fibers, biofilm can grow freely on the anode surface so that the transfer of electrons is fast and produces a relatively high current. Experimental data showed a positive potential after an effective integration of the LF and MFC systems in the handling of waste. The product is then simultaneously converted into electrical energy. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":"16 1","pages":"446-458"},"PeriodicalIF":1.3000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Performance of Yeast Microbial Fuel Cell Integrated with Sugarcane Bagasse Fermentation for COD Reduction and Electricity Generation\",\"authors\":\"M. Christwardana, J. Joelianingsih, Linda Aliffia Yoshi\",\"doi\":\"10.9767/BCREC.16.3.9739.446-458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this analysis is to evaluate the efficiency of the Microbial Fuel Cell (MFC) system incorporated with the fermentation process, with the aim of reducing COD and generating electricity, using sugarcane bagasse extract as a substrate, in the presence and absence of sugarcane fibers. There is a possibility of turning bagasse extract into renewable bioenergy to promote the sustainability of the environment and energy. As a result, the integration of liquid fermentation (LF) with MFC has improved efficiency compared to semi-solid state fermentation (S-SSF). The maximum power generated was 14.88 mW/m2, with an average COD removal of 39.68% per cycle. The variation margin of the liquid fermentation pH readings remained slightly decrease, with a slight deflection of +0.14 occurring from 4.33. With the absence of bagasse fibers, biofilm can grow freely on the anode surface so that the transfer of electrons is fast and produces a relatively high current. Experimental data showed a positive potential after an effective integration of the LF and MFC systems in the handling of waste. The product is then simultaneously converted into electrical energy. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).\",\"PeriodicalId\":46276,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering and Catalysis\",\"volume\":\"16 1\",\"pages\":\"446-458\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering and Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/BCREC.16.3.9739.446-458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/BCREC.16.3.9739.446-458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 8

摘要

该分析的目的是评估与发酵过程结合的微生物燃料电池(MFC)系统的效率,目的是在存在和不存在甘蔗纤维的情况下,使用甘蔗渣提取物作为底物,降低COD并发电。有可能将甘蔗渣提取物转化为可再生生物能源,以促进环境和能源的可持续性。因此,与半固态发酵(S-SSF)相比,液体发酵(LF)与MFC的结合提高了效率。最大发电量为14.88mW/m2,每个循环的平均COD去除率为39.68%。液体发酵pH读数的变化幅度仍然略有下降,从4.33略微偏离+0.14。在没有蔗渣纤维的情况下,生物膜可以在阳极表面自由生长,因此电子的转移很快,并产生相对较高的电流。实验数据显示,LF和MFC系统在废物处理中有效集成后具有积极的潜力。然后产品被同时转换成电能。版权所有©2021作者所有,BCREC集团出版。这是CC BY-SA许可证下的开放访问文章(https://creativecommons.org/licenses/by-sa/4.0)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of Yeast Microbial Fuel Cell Integrated with Sugarcane Bagasse Fermentation for COD Reduction and Electricity Generation
The purpose of this analysis is to evaluate the efficiency of the Microbial Fuel Cell (MFC) system incorporated with the fermentation process, with the aim of reducing COD and generating electricity, using sugarcane bagasse extract as a substrate, in the presence and absence of sugarcane fibers. There is a possibility of turning bagasse extract into renewable bioenergy to promote the sustainability of the environment and energy. As a result, the integration of liquid fermentation (LF) with MFC has improved efficiency compared to semi-solid state fermentation (S-SSF). The maximum power generated was 14.88 mW/m2, with an average COD removal of 39.68% per cycle. The variation margin of the liquid fermentation pH readings remained slightly decrease, with a slight deflection of +0.14 occurring from 4.33. With the absence of bagasse fibers, biofilm can grow freely on the anode surface so that the transfer of electrons is fast and produces a relatively high current. Experimental data showed a positive potential after an effective integration of the LF and MFC systems in the handling of waste. The product is then simultaneously converted into electrical energy. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
6.70%
发文量
52
审稿时长
12 weeks
期刊介绍: Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on general chemical engineering process are not covered and out of scope of this journal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信