基因组选择作为玉米品种发育的工具

C. D. Marinho, I. Coelho, M. A. Peixoto, G. A. C. CARVALHO JUNIOR, Marcio Fernando Ribeiro Resende Júnior
{"title":"基因组选择作为玉米品种发育的工具","authors":"C. D. Marinho, I. Coelho, M. A. Peixoto, G. A. C. CARVALHO JUNIOR, Marcio Fernando Ribeiro Resende Júnior","doi":"10.18512/rbms2022v21e1285","DOIUrl":null,"url":null,"abstract":"The ability to predict genotypes that have not yet been tested is always a target of plant breeders. Over the last twenty years, many studies presented genomic selection (GS) as a tool contributing to this goal. Currently, many research papers have shown encouraging results in the application of GS. However, there are few examples of long-term, successful applications of GS in plant breeding programs. Furthermore, for breeders and researchers considering the application of GS, there are a series of important considerations on how to adapt a breeding program to maximize the benefit of GS, aiming to reduce the costs and maximize the genetic gains. Under this perspective, we present a review with a general view about applied GS in maize breeding, future perspectives of this technique, and an applied study case of a breeding program using GS. We attempt to provide a brief review of the literature with recent developments, as well as a discussion involving the number of markers required to deploy GS, the different statistical approaches to create GS models, the different ways to define training populations, and the incorporation of non-additive effects and genotype by environment interaction. We end with general recommendations and conclusions about some critical points about adopting GS in maize breeding.","PeriodicalId":34859,"journal":{"name":"Revista Brasileira de Milho e Sorgo","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GENOMIC SELECTION AS A TOOL FOR MAIZE CULTIVARS DEVELOPMENT\",\"authors\":\"C. D. Marinho, I. Coelho, M. A. Peixoto, G. A. C. CARVALHO JUNIOR, Marcio Fernando Ribeiro Resende Júnior\",\"doi\":\"10.18512/rbms2022v21e1285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to predict genotypes that have not yet been tested is always a target of plant breeders. Over the last twenty years, many studies presented genomic selection (GS) as a tool contributing to this goal. Currently, many research papers have shown encouraging results in the application of GS. However, there are few examples of long-term, successful applications of GS in plant breeding programs. Furthermore, for breeders and researchers considering the application of GS, there are a series of important considerations on how to adapt a breeding program to maximize the benefit of GS, aiming to reduce the costs and maximize the genetic gains. Under this perspective, we present a review with a general view about applied GS in maize breeding, future perspectives of this technique, and an applied study case of a breeding program using GS. We attempt to provide a brief review of the literature with recent developments, as well as a discussion involving the number of markers required to deploy GS, the different statistical approaches to create GS models, the different ways to define training populations, and the incorporation of non-additive effects and genotype by environment interaction. We end with general recommendations and conclusions about some critical points about adopting GS in maize breeding.\",\"PeriodicalId\":34859,\"journal\":{\"name\":\"Revista Brasileira de Milho e Sorgo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Milho e Sorgo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18512/rbms2022v21e1285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Milho e Sorgo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18512/rbms2022v21e1285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测尚未测试的基因型的能力一直是植物育种家的目标。在过去的二十年里,许多研究将基因组选择(GS)作为实现这一目标的工具。目前,许多研究论文在GS的应用方面取得了令人鼓舞的成果。然而,很少有GS在植物育种项目中长期成功应用的例子。此外,对于考虑GS应用的育种家和研究人员来说,如何调整育种计划以最大限度地提高GS的效益,以降低成本并最大限度地增加遗传收益,还有一系列重要的考虑因素。在这一视角下,我们对GS在玉米育种中的应用、该技术的未来前景以及使用GS的育种计划的应用研究案例进行了综述。我们试图简要回顾文献和最新进展,并讨论部署GS所需的标记数量,创建GS模型的不同统计方法,定义训练群体的不同方法,以及通过环境相互作用引入非加性效应和基因型。最后,我们对在玉米育种中采用GS的一些关键点提出了一般性的建议和结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GENOMIC SELECTION AS A TOOL FOR MAIZE CULTIVARS DEVELOPMENT
The ability to predict genotypes that have not yet been tested is always a target of plant breeders. Over the last twenty years, many studies presented genomic selection (GS) as a tool contributing to this goal. Currently, many research papers have shown encouraging results in the application of GS. However, there are few examples of long-term, successful applications of GS in plant breeding programs. Furthermore, for breeders and researchers considering the application of GS, there are a series of important considerations on how to adapt a breeding program to maximize the benefit of GS, aiming to reduce the costs and maximize the genetic gains. Under this perspective, we present a review with a general view about applied GS in maize breeding, future perspectives of this technique, and an applied study case of a breeding program using GS. We attempt to provide a brief review of the literature with recent developments, as well as a discussion involving the number of markers required to deploy GS, the different statistical approaches to create GS models, the different ways to define training populations, and the incorporation of non-additive effects and genotype by environment interaction. We end with general recommendations and conclusions about some critical points about adopting GS in maize breeding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
27
审稿时长
40 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信