奇异riesz型扩散流的全局实时平均场收敛性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Rosenzweig, S. Serfaty
{"title":"奇异riesz型扩散流的全局实时平均场收敛性","authors":"M. Rosenzweig, S. Serfaty","doi":"10.1214/22-aap1833","DOIUrl":null,"url":null,"abstract":"We consider the mean-field limit of systems of particles with singular interactions of the type $-\\log|x|$ or $|x|^{-s}$, with $0<s<d-2$, and with an additive noise in dimensions $d \\geq 3$. We use a modulated-energy approach to prove a quantitative convergence rate to the solution of the corresponding limiting PDE. When $s>0$, the convergence is global in time, and it is the first such result valid for both conservative and gradient flows in a singular setting on $\\mathbb{R}^d$. The proof relies on an adaptation of an argument of Carlen-Loss to show a decay rate of the solution to the limiting equation, and on an improvement of the modulated-energy method developed in arXiv:1508.03377, arXiv:1803.08345, arXiv:2107.02592 making it so that all prefactors in the time derivative of the modulated energy are controlled by a decaying bound on the limiting solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Global-in-time mean-field convergence for singular Riesz-type diffusive flows\",\"authors\":\"M. Rosenzweig, S. Serfaty\",\"doi\":\"10.1214/22-aap1833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the mean-field limit of systems of particles with singular interactions of the type $-\\\\log|x|$ or $|x|^{-s}$, with $0<s<d-2$, and with an additive noise in dimensions $d \\\\geq 3$. We use a modulated-energy approach to prove a quantitative convergence rate to the solution of the corresponding limiting PDE. When $s>0$, the convergence is global in time, and it is the first such result valid for both conservative and gradient flows in a singular setting on $\\\\mathbb{R}^d$. The proof relies on an adaptation of an argument of Carlen-Loss to show a decay rate of the solution to the limiting equation, and on an improvement of the modulated-energy method developed in arXiv:1508.03377, arXiv:1803.08345, arXiv:2107.02592 making it so that all prefactors in the time derivative of the modulated energy are controlled by a decaying bound on the limiting solution.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1833\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1833","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 22

摘要

考虑了具有$-\log|x|$或$|x|^{-s}$奇异相互作用的粒子系统的平均场极限,在$00$下,收敛在时间上是全局的,这是第一个在$\mathbb{R}^d$上的奇异设置下保守流和梯度流都有效的结果。该证明依赖于对Carlen-Loss的一个论证的改编,以显示极限方程解的衰减率,并依赖于对arXiv:1508.03377, arXiv:1803.08345, arXiv:2107.02592中提出的调制能量方法的改进,使得调制能量的时间导数中的所有前因子都由极限解的衰减界控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global-in-time mean-field convergence for singular Riesz-type diffusive flows
We consider the mean-field limit of systems of particles with singular interactions of the type $-\log|x|$ or $|x|^{-s}$, with $00$, the convergence is global in time, and it is the first such result valid for both conservative and gradient flows in a singular setting on $\mathbb{R}^d$. The proof relies on an adaptation of an argument of Carlen-Loss to show a decay rate of the solution to the limiting equation, and on an improvement of the modulated-energy method developed in arXiv:1508.03377, arXiv:1803.08345, arXiv:2107.02592 making it so that all prefactors in the time derivative of the modulated energy are controlled by a decaying bound on the limiting solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信