关于环$\mathbb上的常循环码和斜常循环码的一个注记{Z}_{p} [u,v]/\langle u^2-u,v^2-v,uv-vu\langle$

Q3 Mathematics
Tushar Bag, H. Islam, O. Prakash, A. Upadhyay
{"title":"关于环$\\mathbb上的常循环码和斜常循环码的一个注记{Z}_{p} [u,v]/\\langle u^2-u,v^2-v,uv-vu\\langle$","authors":"Tushar Bag, H. Islam, O. Prakash, A. Upadhyay","doi":"10.13069/jacodesmath.617244","DOIUrl":null,"url":null,"abstract":"For odd prime $p$, this paper studies $(1+(p-2)u)$-constacyclic codes over the ring $R= \\mathbb{Z}_{p} [u,v]/\\langle u^2-u,v^2-v,uv-vu\\rangle$. We show that the Gray images of $(1+(p-2)u)$-constacyclic codes over $R$ are cyclic and permutation equivalent to a quasi cyclic code over $\\mathbb{Z}_{p}$. We derive the generators for $(1+(p-2)u)$-constacyclic and principally generated $(1+(p-2)u)$-constacyclic codes over $R$. Among others, we extend our results for skew $(1+(p-2)u)$-constacyclic codes over $R$ and exhibit the relation between skew $(1+(p-2)u)$-constacyclic codes with the other linear codes. Finally, as an application of our study, we compute several non trivial linear codes by using the Gray images of $(1+(p-2)u)$-constacyclic codes over this ring $R$.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A note on constacyclic and skew constacyclic codes over the ring $\\\\mathbb{Z}_{p} [u,v]/\\\\langle u^2-u,v^2-v,uv-vu\\\\rangle$\",\"authors\":\"Tushar Bag, H. Islam, O. Prakash, A. Upadhyay\",\"doi\":\"10.13069/jacodesmath.617244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For odd prime $p$, this paper studies $(1+(p-2)u)$-constacyclic codes over the ring $R= \\\\mathbb{Z}_{p} [u,v]/\\\\langle u^2-u,v^2-v,uv-vu\\\\rangle$. We show that the Gray images of $(1+(p-2)u)$-constacyclic codes over $R$ are cyclic and permutation equivalent to a quasi cyclic code over $\\\\mathbb{Z}_{p}$. We derive the generators for $(1+(p-2)u)$-constacyclic and principally generated $(1+(p-2)u)$-constacyclic codes over $R$. Among others, we extend our results for skew $(1+(p-2)u)$-constacyclic codes over $R$ and exhibit the relation between skew $(1+(p-2)u)$-constacyclic codes with the other linear codes. Finally, as an application of our study, we compute several non trivial linear codes by using the Gray images of $(1+(p-2)u)$-constacyclic codes over this ring $R$.\",\"PeriodicalId\":37029,\"journal\":{\"name\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/jacodesmath.617244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/jacodesmath.617244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

对于奇素数$p$,本文研究了环$R= \mathbb{Z}_{p} [u,v]/\langle u^2-u,v^2-v,uv-vu\rangle$上的$(1+(p-2)u)$-常环码。证明了$R$上$(1+(p-2)u)$-常循环码的Gray图像是循环的,置换等价于$\mathbb{Z}_{p}$上的拟循环码。我们推导了$(1+(p-2)u)$-constacyclic的生成器,并在$R$上生成了$(1+(p-2)u)$-constacyclic码。其中,我们推广了斜$(1+(p-2)u)$-常环码在$R$上的结果,并展示了斜$(1+(p-2)u)$-常环码与其他线性码之间的关系。最后,作为我们研究的一个应用,我们利用环R上$(1+(p-2)u)$-常环码的灰度图像计算了几个非平凡线性码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on constacyclic and skew constacyclic codes over the ring $\mathbb{Z}_{p} [u,v]/\langle u^2-u,v^2-v,uv-vu\rangle$
For odd prime $p$, this paper studies $(1+(p-2)u)$-constacyclic codes over the ring $R= \mathbb{Z}_{p} [u,v]/\langle u^2-u,v^2-v,uv-vu\rangle$. We show that the Gray images of $(1+(p-2)u)$-constacyclic codes over $R$ are cyclic and permutation equivalent to a quasi cyclic code over $\mathbb{Z}_{p}$. We derive the generators for $(1+(p-2)u)$-constacyclic and principally generated $(1+(p-2)u)$-constacyclic codes over $R$. Among others, we extend our results for skew $(1+(p-2)u)$-constacyclic codes over $R$ and exhibit the relation between skew $(1+(p-2)u)$-constacyclic codes with the other linear codes. Finally, as an application of our study, we compute several non trivial linear codes by using the Gray images of $(1+(p-2)u)$-constacyclic codes over this ring $R$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信