Bo-Young Jung, Eun Ja Lee, J. Bae, Young Jae Choi, Eun Kyoung Lee, Dae Bong Kim
{"title":"胶质母细胞瘤与孤立性转移瘤的鉴别:常规脑磁共振成像和弥散加权成像的形态学评估","authors":"Bo-Young Jung, Eun Ja Lee, J. Bae, Young Jae Choi, Eun Kyoung Lee, Dae Bong Kim","doi":"10.13104/IMRI.2021.25.1.23","DOIUrl":null,"url":null,"abstract":"Purpose: Differentiating between glioblastoma and solitary metastasis is very important for the planning of further workup and treatment. We assessed the ability of various morphological parameters using conventional MRI and diffusion-based techniques to distinguish between glioblastomas and solitary metastases in tumoral and peritumoral regions. Materials and Methods: We included 38 patients with solitary brain tumors (21 glioblastomas, 17 solitary metastases). To find out if there were differences in the morphologic parameters of enhancing tumors, we analyzed their shape, margins, and enhancement patterns on postcontrast T1-weighted images. During analyses of peritumoral regions, we assessed the extent of peritumoral non-enhancing lesion on T2- and postcontrast T1-weighted images. We also aimed to detect peritumoral neoplastic cell infiltration by visual assessment of T2-weighted and diffusion-based images, including DWI, ADC maps, and exponential DWI, and evaluated which sequence depicted peritumoral neoplastic cell infiltration most clearly. Results: The shapes, margins, and enhancement patterns of tumors all significantly differentiated glioblastomas from metastases. Glioblastomas had an irregular shape, ill-defined margins, and a heterogeneous enhancement pattern; on the other hand, metastases had an ovoid or round shape, well-defined margins, and homogeneous enhancement. Metastases had significantly more extensive peritumoral T2 high signal intensity than glioblastomas had. In visual assessment of peritumoral neoplastic cell infiltration using T2-weighted and diffusion-based images, all sequences differed significantly between the two groups. Exponential DWI had the highest sensitivity for the diagnosis of both glioblastoma (100%) and metastasis (70.6%). A combination of exponential DWI and ADC maps was optimal for the depiction of peritumoral neoplastic cell infiltration in glioblastoma. Conclusion: In the differentiation of glioblastoma from solitary metastatic lesions, visual morphologic assessment of tumoral and peritumoral regions using conventional MRI and diffusion-based techniques can also offer diagnostic information. when assessing peritumoral neoplastic cell infiltration in peritumoral non-enhancing lesions; lower imaging resolution by the relatively low signal-to-noise ratio of 1.5T MRI; the aforementioned T2-shine-through effect in DWI; reactive gliosis and infiltration into the surrounding tissue in the later-staged metastatic lesions.","PeriodicalId":73505,"journal":{"name":"Investigative magnetic resonance imaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Differentiation between Glioblastoma and Solitary Metastasis: Morphologic Assessment by Conventional Brain MR Imaging and Diffusion-Weighted Imaging\",\"authors\":\"Bo-Young Jung, Eun Ja Lee, J. Bae, Young Jae Choi, Eun Kyoung Lee, Dae Bong Kim\",\"doi\":\"10.13104/IMRI.2021.25.1.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: Differentiating between glioblastoma and solitary metastasis is very important for the planning of further workup and treatment. We assessed the ability of various morphological parameters using conventional MRI and diffusion-based techniques to distinguish between glioblastomas and solitary metastases in tumoral and peritumoral regions. Materials and Methods: We included 38 patients with solitary brain tumors (21 glioblastomas, 17 solitary metastases). To find out if there were differences in the morphologic parameters of enhancing tumors, we analyzed their shape, margins, and enhancement patterns on postcontrast T1-weighted images. During analyses of peritumoral regions, we assessed the extent of peritumoral non-enhancing lesion on T2- and postcontrast T1-weighted images. We also aimed to detect peritumoral neoplastic cell infiltration by visual assessment of T2-weighted and diffusion-based images, including DWI, ADC maps, and exponential DWI, and evaluated which sequence depicted peritumoral neoplastic cell infiltration most clearly. Results: The shapes, margins, and enhancement patterns of tumors all significantly differentiated glioblastomas from metastases. Glioblastomas had an irregular shape, ill-defined margins, and a heterogeneous enhancement pattern; on the other hand, metastases had an ovoid or round shape, well-defined margins, and homogeneous enhancement. Metastases had significantly more extensive peritumoral T2 high signal intensity than glioblastomas had. In visual assessment of peritumoral neoplastic cell infiltration using T2-weighted and diffusion-based images, all sequences differed significantly between the two groups. Exponential DWI had the highest sensitivity for the diagnosis of both glioblastoma (100%) and metastasis (70.6%). A combination of exponential DWI and ADC maps was optimal for the depiction of peritumoral neoplastic cell infiltration in glioblastoma. Conclusion: In the differentiation of glioblastoma from solitary metastatic lesions, visual morphologic assessment of tumoral and peritumoral regions using conventional MRI and diffusion-based techniques can also offer diagnostic information. when assessing peritumoral neoplastic cell infiltration in peritumoral non-enhancing lesions; lower imaging resolution by the relatively low signal-to-noise ratio of 1.5T MRI; the aforementioned T2-shine-through effect in DWI; reactive gliosis and infiltration into the surrounding tissue in the later-staged metastatic lesions.\",\"PeriodicalId\":73505,\"journal\":{\"name\":\"Investigative magnetic resonance imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative magnetic resonance imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13104/IMRI.2021.25.1.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative magnetic resonance imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13104/IMRI.2021.25.1.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differentiation between Glioblastoma and Solitary Metastasis: Morphologic Assessment by Conventional Brain MR Imaging and Diffusion-Weighted Imaging
Purpose: Differentiating between glioblastoma and solitary metastasis is very important for the planning of further workup and treatment. We assessed the ability of various morphological parameters using conventional MRI and diffusion-based techniques to distinguish between glioblastomas and solitary metastases in tumoral and peritumoral regions. Materials and Methods: We included 38 patients with solitary brain tumors (21 glioblastomas, 17 solitary metastases). To find out if there were differences in the morphologic parameters of enhancing tumors, we analyzed their shape, margins, and enhancement patterns on postcontrast T1-weighted images. During analyses of peritumoral regions, we assessed the extent of peritumoral non-enhancing lesion on T2- and postcontrast T1-weighted images. We also aimed to detect peritumoral neoplastic cell infiltration by visual assessment of T2-weighted and diffusion-based images, including DWI, ADC maps, and exponential DWI, and evaluated which sequence depicted peritumoral neoplastic cell infiltration most clearly. Results: The shapes, margins, and enhancement patterns of tumors all significantly differentiated glioblastomas from metastases. Glioblastomas had an irregular shape, ill-defined margins, and a heterogeneous enhancement pattern; on the other hand, metastases had an ovoid or round shape, well-defined margins, and homogeneous enhancement. Metastases had significantly more extensive peritumoral T2 high signal intensity than glioblastomas had. In visual assessment of peritumoral neoplastic cell infiltration using T2-weighted and diffusion-based images, all sequences differed significantly between the two groups. Exponential DWI had the highest sensitivity for the diagnosis of both glioblastoma (100%) and metastasis (70.6%). A combination of exponential DWI and ADC maps was optimal for the depiction of peritumoral neoplastic cell infiltration in glioblastoma. Conclusion: In the differentiation of glioblastoma from solitary metastatic lesions, visual morphologic assessment of tumoral and peritumoral regions using conventional MRI and diffusion-based techniques can also offer diagnostic information. when assessing peritumoral neoplastic cell infiltration in peritumoral non-enhancing lesions; lower imaging resolution by the relatively low signal-to-noise ratio of 1.5T MRI; the aforementioned T2-shine-through effect in DWI; reactive gliosis and infiltration into the surrounding tissue in the later-staged metastatic lesions.