Minkowski空间中平均曲率算子问题的单边全局区间分岔及其应用

IF 1 4区 数学
Wen-guo Shen
{"title":"Minkowski空间中平均曲率算子问题的单边全局区间分岔及其应用","authors":"Wen-guo Shen","doi":"10.1007/s11766-022-3580-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish a unilateral global bifurcation result from interval for a class problem with mean curvature operator in Minkowski space with non-differentiable nonlinearity. As applications of the above result, we shall prove the existence of one-sign solutions to the following problem </p><div><div><span>$$\\left\\{ {\\matrix{{ - {\\rm{div}}\\left( {{{\\nabla v} \\over {\\sqrt {1 - {{\\left| {\\nabla v} \\right|}^2}} }}} \\right) = \\alpha (x){v^ + } + \\beta (x){v^ - } + \\lambda a(x)f(v),} \\hfill &amp; {{\\rm{in}}\\,{B_R}(0),} \\hfill \\cr {v(x) = 0,} \\hfill &amp; {{\\rm{on}}\\,\\partial {B_R}(0),} \\hfill \\cr } } \\right.$$</span></div></div><p> where λ ≠ 0 is a parameter, <i>R</i> is a positive constant and <i>B</i><sub><i>R</i></sub>(0) = {<i>x</i> ∈ ℝ<sup><i>N</i></sup>: ∣<i>x</i>∣ &lt; <i>R</i>} is the standard open ball in the Euclidean space ℝ<sup><i>N</i></sup> (<i>N</i> ≥ 1) which is centered at the origin and has radius <i>R</i>. <i>v</i><sup>+</sup> = max{<i>v</i>, 0},<i>v</i><sup>−</sup> = − min{<i>v</i>, 0}, <span>\\(a(x) \\in C(\\overline {{B_R}(0)} \\)</span>, <i>a</i>(<i>x</i>), <i>α</i>(<i>x</i>) and <i>β</i>(<i>x</i>) are radially symmetric with respect to <i>x</i>; <i>f</i> ∈ <i>C</i>(ℝ, ℝ), <i>sf</i>(<i>s</i>) &gt; 0 for <i>s</i> ≠ 0, and <i>f</i><sub>0</sub> ∈ [0, ∞], where <i>f</i><sub>0</sub> = lim<sub>∣<i>s</i>∣→0</sub><i>f</i>(<i>s</i>)/<i>s</i>. We use unilateral global bifurcation techniques and the approximation of connected components to prove our main results. We also study the asymptotic behaviors of positive radial solutions as λ → +∞.</p></div>","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":"37 2","pages":"159 - 176"},"PeriodicalIF":1.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unilateral global interval bifurcation for problem with mean curvature operator in Minkowski space and its applications\",\"authors\":\"Wen-guo Shen\",\"doi\":\"10.1007/s11766-022-3580-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we establish a unilateral global bifurcation result from interval for a class problem with mean curvature operator in Minkowski space with non-differentiable nonlinearity. As applications of the above result, we shall prove the existence of one-sign solutions to the following problem </p><div><div><span>$$\\\\left\\\\{ {\\\\matrix{{ - {\\\\rm{div}}\\\\left( {{{\\\\nabla v} \\\\over {\\\\sqrt {1 - {{\\\\left| {\\\\nabla v} \\\\right|}^2}} }}} \\\\right) = \\\\alpha (x){v^ + } + \\\\beta (x){v^ - } + \\\\lambda a(x)f(v),} \\\\hfill &amp; {{\\\\rm{in}}\\\\,{B_R}(0),} \\\\hfill \\\\cr {v(x) = 0,} \\\\hfill &amp; {{\\\\rm{on}}\\\\,\\\\partial {B_R}(0),} \\\\hfill \\\\cr } } \\\\right.$$</span></div></div><p> where λ ≠ 0 is a parameter, <i>R</i> is a positive constant and <i>B</i><sub><i>R</i></sub>(0) = {<i>x</i> ∈ ℝ<sup><i>N</i></sup>: ∣<i>x</i>∣ &lt; <i>R</i>} is the standard open ball in the Euclidean space ℝ<sup><i>N</i></sup> (<i>N</i> ≥ 1) which is centered at the origin and has radius <i>R</i>. <i>v</i><sup>+</sup> = max{<i>v</i>, 0},<i>v</i><sup>−</sup> = − min{<i>v</i>, 0}, <span>\\\\(a(x) \\\\in C(\\\\overline {{B_R}(0)} \\\\)</span>, <i>a</i>(<i>x</i>), <i>α</i>(<i>x</i>) and <i>β</i>(<i>x</i>) are radially symmetric with respect to <i>x</i>; <i>f</i> ∈ <i>C</i>(ℝ, ℝ), <i>sf</i>(<i>s</i>) &gt; 0 for <i>s</i> ≠ 0, and <i>f</i><sub>0</sub> ∈ [0, ∞], where <i>f</i><sub>0</sub> = lim<sub>∣<i>s</i>∣→0</sub><i>f</i>(<i>s</i>)/<i>s</i>. We use unilateral global bifurcation techniques and the approximation of connected components to prove our main results. We also study the asymptotic behaviors of positive radial solutions as λ → +∞.</p></div>\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":\"37 2\",\"pages\":\"159 - 176\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-022-3580-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-022-3580-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了Minkowski空间中一类具有不可微非线性的平均曲率算子问题的单边全局分岔结果。作为上述结果的应用,我们将证明下列问题$$\left\{ {\matrix{{ - {\rm{div}}\left( {{{\nabla v} \over {\sqrt {1 - {{\left| {\nabla v} \right|}^2}} }}} \right) = \alpha (x){v^ + } + \beta (x){v^ - } + \lambda a(x)f(v),} \hfill & {{\rm{in}}\,{B_R}(0),} \hfill \cr {v(x) = 0,} \hfill & {{\rm{on}}\,\partial {B_R}(0),} \hfill \cr } } \right.$$的一符号解的存在性,其中λ≠0是参数,R是正常数,BR(0) = {x∈∈∈N:∣x∣&lt;R}是欧几里德空间(N≥1)中以原点为中心半径为R的标准开球,v + = {maxv, 0},v−= - {minv, 0}, \(a(x) \in C(\overline {{B_R}(0)} \), a(x), α(x), β(x)相对于x径向对称;f∈C(∈,∈),sf(s) &gt;0对于s≠0,且f0∈[0,∞],其中f0 = lim∣s∣→0f(s)/s。我们使用单边全局分岔技术和连通分量的逼近来证明我们的主要结果。我们还研究了正径向解在λ→+∞时的渐近性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unilateral global interval bifurcation for problem with mean curvature operator in Minkowski space and its applications

In this paper, we establish a unilateral global bifurcation result from interval for a class problem with mean curvature operator in Minkowski space with non-differentiable nonlinearity. As applications of the above result, we shall prove the existence of one-sign solutions to the following problem

$$\left\{ {\matrix{{ - {\rm{div}}\left( {{{\nabla v} \over {\sqrt {1 - {{\left| {\nabla v} \right|}^2}} }}} \right) = \alpha (x){v^ + } + \beta (x){v^ - } + \lambda a(x)f(v),} \hfill & {{\rm{in}}\,{B_R}(0),} \hfill \cr {v(x) = 0,} \hfill & {{\rm{on}}\,\partial {B_R}(0),} \hfill \cr } } \right.$$

where λ ≠ 0 is a parameter, R is a positive constant and BR(0) = {x ∈ ℝN: ∣x∣ < R} is the standard open ball in the Euclidean space ℝN (N ≥ 1) which is centered at the origin and has radius R. v+ = max{v, 0},v = − min{v, 0}, \(a(x) \in C(\overline {{B_R}(0)} \), a(x), α(x) and β(x) are radially symmetric with respect to x; fC(ℝ, ℝ), sf(s) > 0 for s ≠ 0, and f0 ∈ [0, ∞], where f0 = lims∣→0f(s)/s. We use unilateral global bifurcation techniques and the approximation of connected components to prove our main results. We also study the asymptotic behaviors of positive radial solutions as λ → +∞.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.00%
发文量
33
期刊介绍: Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects. The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry. Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信