Junjie Wei, Long Li, Ruilin Li, Qingquan Liu, Zejun Yan, Tao Chen
{"title":"双成像模式智能水凝胶信息平台,用于光照无关的隐蔽解密和读取","authors":"Junjie Wei, Long Li, Ruilin Li, Qingquan Liu, Zejun Yan, Tao Chen","doi":"10.1080/19475411.2022.2116737","DOIUrl":null,"url":null,"abstract":"ABSTRACT Smart hydrogel with color responsiveness is envisioned as one of the most promising materials for advanced information encryption and decryption platform, but the illumination-dependent way of decrypting and reading information leads to the worrying of concealment in some particular scenarios. Herein, we proposed a smart hydrogel information platform with dual imaging modes by utilizing the accompanying behaviors in transparency change and heat releasing after crystallization of supercooled solution. For this smart hydrogel information platform, the hidden information could be written and decrypted by ink of ethylene glycol and decryption tool of seed crystal, respectively. Furthermore, in addition to the traditional optical imaging mode with the assistance of light illumination, the decrypted information on dual-imaging-mode hydrogel platform also could be read by thermal imaging mode in dark environment owing to the exothermic crystallization. The illumination-independent read mode based on heat radiation helps to improve the secrecy and safety of the decryption and read process. This investigation provides a facile and feasible strategy to design illumination-independent information platform that enables reading the encrypted information in secret. Graphical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"13 1","pages":"612 - 625"},"PeriodicalIF":4.5000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dual-imaging-mode smart hydrogel information platform for illumination-independent covert decryption and read\",\"authors\":\"Junjie Wei, Long Li, Ruilin Li, Qingquan Liu, Zejun Yan, Tao Chen\",\"doi\":\"10.1080/19475411.2022.2116737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Smart hydrogel with color responsiveness is envisioned as one of the most promising materials for advanced information encryption and decryption platform, but the illumination-dependent way of decrypting and reading information leads to the worrying of concealment in some particular scenarios. Herein, we proposed a smart hydrogel information platform with dual imaging modes by utilizing the accompanying behaviors in transparency change and heat releasing after crystallization of supercooled solution. For this smart hydrogel information platform, the hidden information could be written and decrypted by ink of ethylene glycol and decryption tool of seed crystal, respectively. Furthermore, in addition to the traditional optical imaging mode with the assistance of light illumination, the decrypted information on dual-imaging-mode hydrogel platform also could be read by thermal imaging mode in dark environment owing to the exothermic crystallization. The illumination-independent read mode based on heat radiation helps to improve the secrecy and safety of the decryption and read process. This investigation provides a facile and feasible strategy to design illumination-independent information platform that enables reading the encrypted information in secret. Graphical abstract\",\"PeriodicalId\":48516,\"journal\":{\"name\":\"International Journal of Smart and Nano Materials\",\"volume\":\"13 1\",\"pages\":\"612 - 625\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Smart and Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/19475411.2022.2116737\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2022.2116737","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual-imaging-mode smart hydrogel information platform for illumination-independent covert decryption and read
ABSTRACT Smart hydrogel with color responsiveness is envisioned as one of the most promising materials for advanced information encryption and decryption platform, but the illumination-dependent way of decrypting and reading information leads to the worrying of concealment in some particular scenarios. Herein, we proposed a smart hydrogel information platform with dual imaging modes by utilizing the accompanying behaviors in transparency change and heat releasing after crystallization of supercooled solution. For this smart hydrogel information platform, the hidden information could be written and decrypted by ink of ethylene glycol and decryption tool of seed crystal, respectively. Furthermore, in addition to the traditional optical imaging mode with the assistance of light illumination, the decrypted information on dual-imaging-mode hydrogel platform also could be read by thermal imaging mode in dark environment owing to the exothermic crystallization. The illumination-independent read mode based on heat radiation helps to improve the secrecy and safety of the decryption and read process. This investigation provides a facile and feasible strategy to design illumination-independent information platform that enables reading the encrypted information in secret. Graphical abstract
期刊介绍:
The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.