{"title":"蜻蜓的翅膀是如何工作的?简要介绍机翼结构部件的功能作用","authors":"H. Rajabi, S. Gorb","doi":"10.1080/13887890.2019.1677515","DOIUrl":null,"url":null,"abstract":"Insect wings have no flight muscles, except those situated in the thorax. However, they continuously respond to forces acting on them during flight. This ability is achieved by the specialised design of the wings and plays a key role in their aerodynamic performance. Dragonfly (Anisoptera) wings represent an extreme example of this automatic shape control among flying insects. The functionality of the wings results from complex interactions between several structural components of which they are composed. Here we put together the results of our recent works, to review the functional roles of some of the key wing components including vein, membrane, vein microjoint, nodus, basal complex and corrugation. Our results help to understand the relationship between the structure, material and function of each of these wing components in complex dragonfly wings. We further use our data to explain how the interactions between the wing components provide dragonflies with fully functional wings.","PeriodicalId":50297,"journal":{"name":"International Journal of Odonatology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13887890.2019.1677515","citationCount":"20","resultStr":"{\"title\":\"How do dragonfly wings work? A brief guide to functional roles of wing structural components\",\"authors\":\"H. Rajabi, S. Gorb\",\"doi\":\"10.1080/13887890.2019.1677515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insect wings have no flight muscles, except those situated in the thorax. However, they continuously respond to forces acting on them during flight. This ability is achieved by the specialised design of the wings and plays a key role in their aerodynamic performance. Dragonfly (Anisoptera) wings represent an extreme example of this automatic shape control among flying insects. The functionality of the wings results from complex interactions between several structural components of which they are composed. Here we put together the results of our recent works, to review the functional roles of some of the key wing components including vein, membrane, vein microjoint, nodus, basal complex and corrugation. Our results help to understand the relationship between the structure, material and function of each of these wing components in complex dragonfly wings. We further use our data to explain how the interactions between the wing components provide dragonflies with fully functional wings.\",\"PeriodicalId\":50297,\"journal\":{\"name\":\"International Journal of Odonatology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13887890.2019.1677515\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Odonatology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/13887890.2019.1677515\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Odonatology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/13887890.2019.1677515","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
How do dragonfly wings work? A brief guide to functional roles of wing structural components
Insect wings have no flight muscles, except those situated in the thorax. However, they continuously respond to forces acting on them during flight. This ability is achieved by the specialised design of the wings and plays a key role in their aerodynamic performance. Dragonfly (Anisoptera) wings represent an extreme example of this automatic shape control among flying insects. The functionality of the wings results from complex interactions between several structural components of which they are composed. Here we put together the results of our recent works, to review the functional roles of some of the key wing components including vein, membrane, vein microjoint, nodus, basal complex and corrugation. Our results help to understand the relationship between the structure, material and function of each of these wing components in complex dragonfly wings. We further use our data to explain how the interactions between the wing components provide dragonflies with fully functional wings.
期刊介绍:
International Journal of Odonatology (IJO) is aimed at providing a publication outlet for the growing number of students of Odonata. It will address subjects such as the ecology, ethology, physiology, genetics, taxonomy, phylogeny and geographic distribution of species. Reviews will be by invitation, but authors who plan to write a review on a subject of interest to the journal are encouraged to contact the editor.