小型化巴特勒矩阵的毫米波多波束阵列天线

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Noorlindawaty Md Jizat, Yoshihide Yamada, Z. Yusoff
{"title":"小型化巴特勒矩阵的毫米波多波束阵列天线","authors":"Noorlindawaty Md Jizat, Yoshihide Yamada, Z. Yusoff","doi":"10.30880/ijie.2023.15.03.014","DOIUrl":null,"url":null,"abstract":"New radio wave technologies of millimeter-wave (mmWave), compact cell size, and multi beam base station are introduced with the recent development of the 5G mobile system. The Butler Matrix (BM) feed circuit is the most preferable candidate for the 5G mobile system since it can achieve multi beam radiationpatterns at the array antenna, provide structural compactness and produce good multi beams.The BM circuit is typically built on a single dielectric substrate. However, in this single-substrate structure, the micro strip line connecting several circuit elements in the BM spans over a large area, resulting in significant feeding loss in the millimeter frequency band.In this study, a compact size circuit configuration of BM is proposed, where the original single-substrate structure is modified into a two-substrate stacking structure. The via-hole is designed to connect the two substrates with minimal path loss. The BM is built for the 28 GHz band with four inputs and four outputs.The phase delay is optimized using via-hole to produce the phase difference of ±45º and ±135º. The coupling for the hybrid is -3 dB, while the transmission coefficient of -6 ± 3 is achieved from the BM structure and, the return loss (Sii) for both input and output ports are less than -10 dB. The two-substrate BM is combined with the rectangular patch antenna and the via-hole patch antenna in a planar configuration of 0.5 λ0spacing to obtain the radiation patterns. When the Port 1 through Port 4 of the BM are fed, four beams are created, with peak gains of 11.2 dBi, 9.87 dBi, 10.2 dBi, and 11.7 dBi, respectively, towards +16°, -35°, +39°, and -12°. The analysis includes the radiation performance from the ideal value and from the BM input. Three-dimensional representations of good multibeam radiation patterns are obtained after each input signal of the BM is fed","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multibeam Array Antenna with Compact Size Butler Matrix for Millimeter-Wave Application\",\"authors\":\"Noorlindawaty Md Jizat, Yoshihide Yamada, Z. Yusoff\",\"doi\":\"10.30880/ijie.2023.15.03.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New radio wave technologies of millimeter-wave (mmWave), compact cell size, and multi beam base station are introduced with the recent development of the 5G mobile system. The Butler Matrix (BM) feed circuit is the most preferable candidate for the 5G mobile system since it can achieve multi beam radiationpatterns at the array antenna, provide structural compactness and produce good multi beams.The BM circuit is typically built on a single dielectric substrate. However, in this single-substrate structure, the micro strip line connecting several circuit elements in the BM spans over a large area, resulting in significant feeding loss in the millimeter frequency band.In this study, a compact size circuit configuration of BM is proposed, where the original single-substrate structure is modified into a two-substrate stacking structure. The via-hole is designed to connect the two substrates with minimal path loss. The BM is built for the 28 GHz band with four inputs and four outputs.The phase delay is optimized using via-hole to produce the phase difference of ±45º and ±135º. The coupling for the hybrid is -3 dB, while the transmission coefficient of -6 ± 3 is achieved from the BM structure and, the return loss (Sii) for both input and output ports are less than -10 dB. The two-substrate BM is combined with the rectangular patch antenna and the via-hole patch antenna in a planar configuration of 0.5 λ0spacing to obtain the radiation patterns. When the Port 1 through Port 4 of the BM are fed, four beams are created, with peak gains of 11.2 dBi, 9.87 dBi, 10.2 dBi, and 11.7 dBi, respectively, towards +16°, -35°, +39°, and -12°. The analysis includes the radiation performance from the ideal value and from the BM input. Three-dimensional representations of good multibeam radiation patterns are obtained after each input signal of the BM is fed\",\"PeriodicalId\":14189,\"journal\":{\"name\":\"International Journal of Integrated Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Integrated Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/ijie.2023.15.03.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.03.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着5G移动系统的发展,引入了毫米波、紧凑型小区和多波束基站等新的无线电波技术。Butler矩阵(BM)馈电电路是5G移动系统最优选的候选者,因为它可以在阵列天线处实现多波束辐射方向图,提供结构紧凑性并产生良好的多波束。BM电路通常构建在单个电介质衬底上。然而,在这种单基板结构中,连接BM中的几个电路元件的微带线跨越大面积,导致毫米频带中的显著馈电损耗。在本研究中,提出了一种紧凑尺寸的BM电路配置,将原来的单基板结构修改为两基板堆叠结构。过孔被设计为以最小的路径损耗连接两个基板。BM是为28 GHz频带构建的,具有四个输入和四个输出。使用通孔优化相位延迟,以产生±45º和±135º的相位差。混合装置的耦合为-3dB,而BM结构的传输系数为-6±3,输入和输出端口的回波损耗(Sii)均小于-10dB。将两个基板BM与矩形贴片天线和通孔贴片天线组合在0.5λ0间距的平面配置中,以获得辐射方向图。当BM的端口1至端口4馈电时,产生四个波束,峰值增益分别为11.2 dBi、9.87 dBi、10.2 dBi和11.7 dBi,分别朝向+16°、-35°、+39°和-12°。分析包括理想值和BM输入的辐射性能。在BM的每个输入信号被馈送之后,获得良好的多波束辐射图的三维表示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multibeam Array Antenna with Compact Size Butler Matrix for Millimeter-Wave Application
New radio wave technologies of millimeter-wave (mmWave), compact cell size, and multi beam base station are introduced with the recent development of the 5G mobile system. The Butler Matrix (BM) feed circuit is the most preferable candidate for the 5G mobile system since it can achieve multi beam radiationpatterns at the array antenna, provide structural compactness and produce good multi beams.The BM circuit is typically built on a single dielectric substrate. However, in this single-substrate structure, the micro strip line connecting several circuit elements in the BM spans over a large area, resulting in significant feeding loss in the millimeter frequency band.In this study, a compact size circuit configuration of BM is proposed, where the original single-substrate structure is modified into a two-substrate stacking structure. The via-hole is designed to connect the two substrates with minimal path loss. The BM is built for the 28 GHz band with four inputs and four outputs.The phase delay is optimized using via-hole to produce the phase difference of ±45º and ±135º. The coupling for the hybrid is -3 dB, while the transmission coefficient of -6 ± 3 is achieved from the BM structure and, the return loss (Sii) for both input and output ports are less than -10 dB. The two-substrate BM is combined with the rectangular patch antenna and the via-hole patch antenna in a planar configuration of 0.5 λ0spacing to obtain the radiation patterns. When the Port 1 through Port 4 of the BM are fed, four beams are created, with peak gains of 11.2 dBi, 9.87 dBi, 10.2 dBi, and 11.7 dBi, respectively, towards +16°, -35°, +39°, and -12°. The analysis includes the radiation performance from the ideal value and from the BM input. Three-dimensional representations of good multibeam radiation patterns are obtained after each input signal of the BM is fed
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Integrated Engineering
International Journal of Integrated Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
0.00%
发文量
57
期刊介绍: The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信