英国北海外海湾埃特里克油田贾维斯构造下二叠统(zechstein)碳酸盐岩储层原油成因

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Mirosław Słowakiewicz, Maurice E. Tucker
{"title":"英国北海外海湾埃特里克油田贾维斯构造下二叠统(zechstein)碳酸盐岩储层原油成因","authors":"Mirosław Słowakiewicz,&nbsp;Maurice E. Tucker","doi":"10.1111/jpg.12839","DOIUrl":null,"url":null,"abstract":"<p>Oil in the Jarvis structure underlying the main Upper Jurassic reservoir at the Ettrick oilfield (Outer Moray Firth, UK northern North Sea) is present in Upper Permian (Zechstein) carbonates. The origin of this “Jarvis oil” is investigated in this paper using a multidisciplinary approach based on data from well-logs and cores from wells 20/02-2 and 20/02-3. Reservoirs at the Jarvis structure consist of carbonates in the upper part of the Halibut Carbonate Formation (Ca2) and in the Carbonate Member of the Turbot Anhydrite Formation (Ca3). These carbonates are typical Zechstein dolomites composed of a range of facies from mudpackstones with storm beds deposited at moderate water depths to shoreface bioclastic-oolitic packstones to shallow-subtidal and intertidal microbial laminites. Interbedded anhydrites replace sabkha and lagoonal selenitic gypsum. Several shallowing-upward units are recognised. Molecular analysis of the Jarvis oil, and comparisons with biomarker and other geochemical data from extracts of Zechstein cores and published data from different source rocks from the North Sea area, suggest that the oil was generated by marine, OM-rich shales in the Upper Jurassic Kimmeridge Clay Formation. The oil was generated at peak oil window maturity and is characterised by high Pr/Ph, BNH/H and DBT/P ratios, and abundant C<sub>28</sub> steranes and C<sub>28+29</sub> monoaromatic and C<sub>26</sub>R + C<sub>27</sub>S triaromatic steroids. The molecular composition of organic material in extracts of core samples of Zechstein carbonates from wells in the Jarvis structure differs significantly from that of the Jarvis oil. Biomarkers such as BNH are absent in the core extracts, and there are different distributions and abundances of saturated and aromatic hydrocarbons, likely controlled by thermal maturity.</p>","PeriodicalId":16748,"journal":{"name":"Journal of Petroleum Geology","volume":"46 3","pages":"275-294"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ORIGIN OF OIL IN UPPER PERMIAN (ZECHSTEIN) CARBONATE RESERVOIR ROCKS AT THE JARVIS STRUCTURE UNDERLYING THE ETTRICK FIELD, OUTER MORAY FIRTH, UK NORTH SEA\",\"authors\":\"Mirosław Słowakiewicz,&nbsp;Maurice E. Tucker\",\"doi\":\"10.1111/jpg.12839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oil in the Jarvis structure underlying the main Upper Jurassic reservoir at the Ettrick oilfield (Outer Moray Firth, UK northern North Sea) is present in Upper Permian (Zechstein) carbonates. The origin of this “Jarvis oil” is investigated in this paper using a multidisciplinary approach based on data from well-logs and cores from wells 20/02-2 and 20/02-3. Reservoirs at the Jarvis structure consist of carbonates in the upper part of the Halibut Carbonate Formation (Ca2) and in the Carbonate Member of the Turbot Anhydrite Formation (Ca3). These carbonates are typical Zechstein dolomites composed of a range of facies from mudpackstones with storm beds deposited at moderate water depths to shoreface bioclastic-oolitic packstones to shallow-subtidal and intertidal microbial laminites. Interbedded anhydrites replace sabkha and lagoonal selenitic gypsum. Several shallowing-upward units are recognised. Molecular analysis of the Jarvis oil, and comparisons with biomarker and other geochemical data from extracts of Zechstein cores and published data from different source rocks from the North Sea area, suggest that the oil was generated by marine, OM-rich shales in the Upper Jurassic Kimmeridge Clay Formation. The oil was generated at peak oil window maturity and is characterised by high Pr/Ph, BNH/H and DBT/P ratios, and abundant C<sub>28</sub> steranes and C<sub>28+29</sub> monoaromatic and C<sub>26</sub>R + C<sub>27</sub>S triaromatic steroids. The molecular composition of organic material in extracts of core samples of Zechstein carbonates from wells in the Jarvis structure differs significantly from that of the Jarvis oil. Biomarkers such as BNH are absent in the core extracts, and there are different distributions and abundances of saturated and aromatic hydrocarbons, likely controlled by thermal maturity.</p>\",\"PeriodicalId\":16748,\"journal\":{\"name\":\"Journal of Petroleum Geology\",\"volume\":\"46 3\",\"pages\":\"275-294\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jpg.12839\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpg.12839","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Ettrick油田(英国北海北部外马里湾)上侏罗纪主要储层下的Jarvis构造中的石油存在于上二叠纪(Zechstein)碳酸盐岩中。本文根据20/02‐2和20/02‐3井的测井和岩心数据,采用多学科方法研究了这种“贾维斯油”的起源。Jarvis构造的储层由Halibut碳酸盐岩组上部(Ca2)和Turbot硬石膏组碳酸盐岩段(Ca3)的碳酸盐组成。这些碳酸盐岩是典型的Zechstein白云岩,由一系列相组成,从沉积在中等水深的风暴床泥粒灰岩到滨面生物碎屑鲕粒灰岩,再到浅潮下带和潮间带微生物层压板。夹层硬石膏取代了萨卜哈和泻湖硒石膏。已识别出几个向上变浅的单元。Jarvis石油的分子分析,以及与Zechstein岩心提取物中的生物标志物和其他地球化学数据以及北海地区不同烃源岩的已发表数据的比较,表明石油是由上侏罗纪Kimmeridge粘土组中富含OM的海相页岩产生的。该油是在油窗成熟度峰值产生的,其特征是高的Pr/Ph、BNH/H和DBT/P比率,以及丰富的C28甾烷和C28+29单芳族和C26R+C27S三芳族甾体。来自Jarvis结构井的Zechstein碳酸盐岩心样品提取物中有机物质的分子组成与Jarvis油的分子组成显著不同。岩心提取物中不存在BNH等生物标志物,饱和烃和芳烃的分布和丰度不同,可能受热成熟度的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ORIGIN OF OIL IN UPPER PERMIAN (ZECHSTEIN) CARBONATE RESERVOIR ROCKS AT THE JARVIS STRUCTURE UNDERLYING THE ETTRICK FIELD, OUTER MORAY FIRTH, UK NORTH SEA

Oil in the Jarvis structure underlying the main Upper Jurassic reservoir at the Ettrick oilfield (Outer Moray Firth, UK northern North Sea) is present in Upper Permian (Zechstein) carbonates. The origin of this “Jarvis oil” is investigated in this paper using a multidisciplinary approach based on data from well-logs and cores from wells 20/02-2 and 20/02-3. Reservoirs at the Jarvis structure consist of carbonates in the upper part of the Halibut Carbonate Formation (Ca2) and in the Carbonate Member of the Turbot Anhydrite Formation (Ca3). These carbonates are typical Zechstein dolomites composed of a range of facies from mudpackstones with storm beds deposited at moderate water depths to shoreface bioclastic-oolitic packstones to shallow-subtidal and intertidal microbial laminites. Interbedded anhydrites replace sabkha and lagoonal selenitic gypsum. Several shallowing-upward units are recognised. Molecular analysis of the Jarvis oil, and comparisons with biomarker and other geochemical data from extracts of Zechstein cores and published data from different source rocks from the North Sea area, suggest that the oil was generated by marine, OM-rich shales in the Upper Jurassic Kimmeridge Clay Formation. The oil was generated at peak oil window maturity and is characterised by high Pr/Ph, BNH/H and DBT/P ratios, and abundant C28 steranes and C28+29 monoaromatic and C26R + C27S triaromatic steroids. The molecular composition of organic material in extracts of core samples of Zechstein carbonates from wells in the Jarvis structure differs significantly from that of the Jarvis oil. Biomarkers such as BNH are absent in the core extracts, and there are different distributions and abundances of saturated and aromatic hydrocarbons, likely controlled by thermal maturity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Petroleum Geology
Journal of Petroleum Geology 地学-地球科学综合
CiteScore
3.40
自引率
11.10%
发文量
22
审稿时长
6 months
期刊介绍: Journal of Petroleum Geology is a quarterly journal devoted to the geology of oil and natural gas. Editorial preference is given to original papers on oilfield regions of the world outside North America and on topics of general application in petroleum exploration and development operations, including geochemical and geophysical studies, basin modelling and reservoir evaluation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信