{"title":"表面风管条件下数值天气预报与折射率反演的融合","authors":"Daniel P. Greenway, T. Haack, E. Hackett","doi":"10.1175/jamc-d-22-0127.1","DOIUrl":null,"url":null,"abstract":"\nThis study investigates the use of numerical weather prediction (NWP) ensembles to aid refractivity inversion problems during surface ducting conditions. Thirteen sets of measured thermodynamic atmospheric data from an instrumented helicopter during the Wallops Island Field Experiment are fit to a two-layer parametric surface duct model to characterize the duct. This modeled refractivity is considered “ground-truth” for the environment and is used to generate the synthetic radar propagation loss field that then drives the inversion process. The inverse solution (refractivity derived from the synthetic radar data) is compared to this “ground-truth” refractivity. For the inversion process, parameters of the two-layer model are iteratively estimated using genetic algorithms to determine which parameters likely produced the synthetic radar propagation field. Three numerical inversion experiments are conducted. The first experiment utilizes a randomized set of two-layer model parameters to initialize the inversion process, while the second experiment initializes the inversion using NWP ensembles, and the third experiment uses NWP ensembles to both initialize and restrict the parameter search intervals used in the inversion process. The results show that incorporation of NWP data benefits the accuracy and speed of the inversion result. However, in a few cases, an extended NWP ensemble forecast period was needed to encompass the “ground-truth” parameters in the restricted search space. Furthermore, it is found that NWP ensemble populations with smaller spreads are more likely to hinder the inverse process than to aid it.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusing Numerical Weather Prediction Ensembles with Refractivity Inversions During Surface Ducting Conditions\",\"authors\":\"Daniel P. Greenway, T. Haack, E. Hackett\",\"doi\":\"10.1175/jamc-d-22-0127.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThis study investigates the use of numerical weather prediction (NWP) ensembles to aid refractivity inversion problems during surface ducting conditions. Thirteen sets of measured thermodynamic atmospheric data from an instrumented helicopter during the Wallops Island Field Experiment are fit to a two-layer parametric surface duct model to characterize the duct. This modeled refractivity is considered “ground-truth” for the environment and is used to generate the synthetic radar propagation loss field that then drives the inversion process. The inverse solution (refractivity derived from the synthetic radar data) is compared to this “ground-truth” refractivity. For the inversion process, parameters of the two-layer model are iteratively estimated using genetic algorithms to determine which parameters likely produced the synthetic radar propagation field. Three numerical inversion experiments are conducted. The first experiment utilizes a randomized set of two-layer model parameters to initialize the inversion process, while the second experiment initializes the inversion using NWP ensembles, and the third experiment uses NWP ensembles to both initialize and restrict the parameter search intervals used in the inversion process. The results show that incorporation of NWP data benefits the accuracy and speed of the inversion result. However, in a few cases, an extended NWP ensemble forecast period was needed to encompass the “ground-truth” parameters in the restricted search space. Furthermore, it is found that NWP ensemble populations with smaller spreads are more likely to hinder the inverse process than to aid it.\",\"PeriodicalId\":15027,\"journal\":{\"name\":\"Journal of Applied Meteorology and Climatology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology and Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jamc-d-22-0127.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-22-0127.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Fusing Numerical Weather Prediction Ensembles with Refractivity Inversions During Surface Ducting Conditions
This study investigates the use of numerical weather prediction (NWP) ensembles to aid refractivity inversion problems during surface ducting conditions. Thirteen sets of measured thermodynamic atmospheric data from an instrumented helicopter during the Wallops Island Field Experiment are fit to a two-layer parametric surface duct model to characterize the duct. This modeled refractivity is considered “ground-truth” for the environment and is used to generate the synthetic radar propagation loss field that then drives the inversion process. The inverse solution (refractivity derived from the synthetic radar data) is compared to this “ground-truth” refractivity. For the inversion process, parameters of the two-layer model are iteratively estimated using genetic algorithms to determine which parameters likely produced the synthetic radar propagation field. Three numerical inversion experiments are conducted. The first experiment utilizes a randomized set of two-layer model parameters to initialize the inversion process, while the second experiment initializes the inversion using NWP ensembles, and the third experiment uses NWP ensembles to both initialize and restrict the parameter search intervals used in the inversion process. The results show that incorporation of NWP data benefits the accuracy and speed of the inversion result. However, in a few cases, an extended NWP ensemble forecast period was needed to encompass the “ground-truth” parameters in the restricted search space. Furthermore, it is found that NWP ensemble populations with smaller spreads are more likely to hinder the inverse process than to aid it.
期刊介绍:
The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.