{"title":"倾斜中厚矿体纵向分段崩落破碎岩体重力流模型","authors":"Xiufeng Zhang, Ganqiang Tao, Zhonghua Zhu","doi":"10.24425/AMS.2019.129367","DOIUrl":null,"url":null,"abstract":"The draw theory is the foundation for decreasing ore loss and dilution indices while extracting deposits from mines. Therefore, research on draw theory is of great significance to optimally guide the draw control and improve the economy efficiency of mines. The laboratory scaled physical draw experiments under inclined wall condition conducted showed that a new way was proposed to investigate the flow zone of granular materials. The flow zone was simply divided into two parts with respect to the demarcation point of the flow axis. Based on the stochastic medium draw theory, theoretical movement formulas were derived to define the gravity flow of fragmented rocks in these two parts. The ore body with 55° dip and 10 m width was taken as an example, the particle flow parameters were fitted, and the corresponding theoretical shape of the draw body was sketched based on the derived equation of draw-body shape. The comparison of experimental and theoretical shapes of the draw body confirmed that they coincided with each other; hence, the reliability of the derived equation of particle motion was validated.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Gravity Flow Model of Fragmented Rocks in Longitudinal Sublevel Caving of Inclined Medium-Thick Ore Bodies\",\"authors\":\"Xiufeng Zhang, Ganqiang Tao, Zhonghua Zhu\",\"doi\":\"10.24425/AMS.2019.129367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The draw theory is the foundation for decreasing ore loss and dilution indices while extracting deposits from mines. Therefore, research on draw theory is of great significance to optimally guide the draw control and improve the economy efficiency of mines. The laboratory scaled physical draw experiments under inclined wall condition conducted showed that a new way was proposed to investigate the flow zone of granular materials. The flow zone was simply divided into two parts with respect to the demarcation point of the flow axis. Based on the stochastic medium draw theory, theoretical movement formulas were derived to define the gravity flow of fragmented rocks in these two parts. The ore body with 55° dip and 10 m width was taken as an example, the particle flow parameters were fitted, and the corresponding theoretical shape of the draw body was sketched based on the derived equation of draw-body shape. The comparison of experimental and theoretical shapes of the draw body confirmed that they coincided with each other; hence, the reliability of the derived equation of particle motion was validated.\",\"PeriodicalId\":55468,\"journal\":{\"name\":\"Archives of Mining Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/AMS.2019.129367\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/AMS.2019.129367","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
A Gravity Flow Model of Fragmented Rocks in Longitudinal Sublevel Caving of Inclined Medium-Thick Ore Bodies
The draw theory is the foundation for decreasing ore loss and dilution indices while extracting deposits from mines. Therefore, research on draw theory is of great significance to optimally guide the draw control and improve the economy efficiency of mines. The laboratory scaled physical draw experiments under inclined wall condition conducted showed that a new way was proposed to investigate the flow zone of granular materials. The flow zone was simply divided into two parts with respect to the demarcation point of the flow axis. Based on the stochastic medium draw theory, theoretical movement formulas were derived to define the gravity flow of fragmented rocks in these two parts. The ore body with 55° dip and 10 m width was taken as an example, the particle flow parameters were fitted, and the corresponding theoretical shape of the draw body was sketched based on the derived equation of draw-body shape. The comparison of experimental and theoretical shapes of the draw body confirmed that they coincided with each other; hence, the reliability of the derived equation of particle motion was validated.
期刊介绍:
Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in:
mining technologies,
mineral processing,
stability of mine workings,
mining machine science,
ventilation systems,
rock mechanics,
termodynamics,
underground storage of oil and gas,
mining and engineering geology,
geotechnical engineering,
tunnelling,
design and construction of tunnels,
design and construction on mining areas,
mining geodesy,
environmental protection in mining,
revitalisation of postindustrial areas.
Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.