Al2O3和MgO负载的Ni-Sn纳米颗粒催化剂表征:苯乙酮加氢

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yasna León-Gutiérrez, G. Cárdenas-Triviño
{"title":"Al2O3和MgO负载的Ni-Sn纳米颗粒催化剂表征:苯乙酮加氢","authors":"Yasna León-Gutiérrez, G. Cárdenas-Triviño","doi":"10.1177/18479804221132128","DOIUrl":null,"url":null,"abstract":"Monometallic and bimetallic Ni and Sn catalysts were prepared in different ratios by the Solvated Metal Atom Dispersed (SMAD) method for the catalytic hydrogenation of acetophenone to 1-phenylethanol. The preparation of the catalysts was carried out by evaporation of Ni and Sn metal atoms and subsequent co-deposition at 77 K using 2-isopropanol as solvent on alumina and magnesium oxide as supports. X-ray photoelectron spectroscopy (XPS) analysis showed a high percentage of nickel atoms in zero valence, while the tin phases were founded in reduced and oxidized form. The average size of the nanoparticles measured by transmission electron microscopy (TEM) ranged from 8 to 15 nm while the metal dispersion on the surface measured by hydrogen chemisorption ranged from 0.07% for Ni1% Sn0.3%/MgO to 3.2% for Ni5%/MgO. Thermogravimetric analysis shows that γ-Al2O3 catalysts exhibit higher thermal stability than MgO catalysts. The catalysis results showed that the best support is MgO reaching 66% conversion in Ni5% Sn0.5%/MgO catalyst.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalyst characterization Ni-Sn nanoparticles supported in Al2O3 and MgO: Acetophenone hydrogenation\",\"authors\":\"Yasna León-Gutiérrez, G. Cárdenas-Triviño\",\"doi\":\"10.1177/18479804221132128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monometallic and bimetallic Ni and Sn catalysts were prepared in different ratios by the Solvated Metal Atom Dispersed (SMAD) method for the catalytic hydrogenation of acetophenone to 1-phenylethanol. The preparation of the catalysts was carried out by evaporation of Ni and Sn metal atoms and subsequent co-deposition at 77 K using 2-isopropanol as solvent on alumina and magnesium oxide as supports. X-ray photoelectron spectroscopy (XPS) analysis showed a high percentage of nickel atoms in zero valence, while the tin phases were founded in reduced and oxidized form. The average size of the nanoparticles measured by transmission electron microscopy (TEM) ranged from 8 to 15 nm while the metal dispersion on the surface measured by hydrogen chemisorption ranged from 0.07% for Ni1% Sn0.3%/MgO to 3.2% for Ni5%/MgO. Thermogravimetric analysis shows that γ-Al2O3 catalysts exhibit higher thermal stability than MgO catalysts. The catalysis results showed that the best support is MgO reaching 66% conversion in Ni5% Sn0.5%/MgO catalyst.\",\"PeriodicalId\":19018,\"journal\":{\"name\":\"Nanomaterials and Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials and Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/18479804221132128\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/18479804221132128","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用溶剂化金属原子分散(SMAD)法制备了不同配比的单金属和双金属Ni、Sn催化剂,用于苯乙酮加氢制1-苯乙醇。以2-异丙醇为溶剂,氧化铝和氧化镁为载体,通过Ni和Sn金属原子蒸发,在77 K下共沉积制备催化剂。x射线光电子能谱(XPS)分析表明,镍原子中零价的比例很高,而锡相则以还原和氧化形式存在。透射电子显微镜(TEM)测得的纳米颗粒平均尺寸为8 ~ 15 nm,氢化学吸附法测得的表面金属分散度从Ni1% Sn0.3%/MgO的0.07%到Ni5%/MgO的3.2%不等。热重分析表明,γ-Al2O3催化剂比MgO催化剂具有更高的热稳定性。结果表明,在Ni5% Sn0.5%/MgO催化剂中,MgO为最佳载体,转化率达到66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catalyst characterization Ni-Sn nanoparticles supported in Al2O3 and MgO: Acetophenone hydrogenation
Monometallic and bimetallic Ni and Sn catalysts were prepared in different ratios by the Solvated Metal Atom Dispersed (SMAD) method for the catalytic hydrogenation of acetophenone to 1-phenylethanol. The preparation of the catalysts was carried out by evaporation of Ni and Sn metal atoms and subsequent co-deposition at 77 K using 2-isopropanol as solvent on alumina and magnesium oxide as supports. X-ray photoelectron spectroscopy (XPS) analysis showed a high percentage of nickel atoms in zero valence, while the tin phases were founded in reduced and oxidized form. The average size of the nanoparticles measured by transmission electron microscopy (TEM) ranged from 8 to 15 nm while the metal dispersion on the surface measured by hydrogen chemisorption ranged from 0.07% for Ni1% Sn0.3%/MgO to 3.2% for Ni5%/MgO. Thermogravimetric analysis shows that γ-Al2O3 catalysts exhibit higher thermal stability than MgO catalysts. The catalysis results showed that the best support is MgO reaching 66% conversion in Ni5% Sn0.5%/MgO catalyst.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials and Nanotechnology
Nanomaterials and Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.20
自引率
21.60%
发文量
13
审稿时长
15 weeks
期刊介绍: Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信