基于布尔推理的二元双聚类归纳的层次启发式方法

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Marcin Michalak
{"title":"基于布尔推理的二元双聚类归纳的层次启发式方法","authors":"Marcin Michalak","doi":"10.1007/s00236-021-00415-9","DOIUrl":null,"url":null,"abstract":"<div><p>Biclustering is a two-dimensional data analysis technique that, applied to a matrix, searches for a subset of rows and columns that intersect to produce a submatrix with given, expected features. Such an approach requires different methods to those of typical classification or regression tasks. In recent years it has become possible to express biclustering goals in the form of Boolean reasoning. This paper presents a new, heuristic approach to bicluster induction in binary data.</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"59 6","pages":"673 - 685"},"PeriodicalIF":0.4000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00236-021-00415-9.pdf","citationCount":"2","resultStr":"{\"title\":\"Hierarchical heuristics for Boolean-reasoning-based binary bicluster induction\",\"authors\":\"Marcin Michalak\",\"doi\":\"10.1007/s00236-021-00415-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biclustering is a two-dimensional data analysis technique that, applied to a matrix, searches for a subset of rows and columns that intersect to produce a submatrix with given, expected features. Such an approach requires different methods to those of typical classification or regression tasks. In recent years it has become possible to express biclustering goals in the form of Boolean reasoning. This paper presents a new, heuristic approach to bicluster induction in binary data.</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":\"59 6\",\"pages\":\"673 - 685\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00236-021-00415-9.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-021-00415-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-021-00415-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

双聚类是一种二维数据分析技术,它应用于矩阵,搜索相交的行和列的子集,以产生具有给定预期特征的子矩阵。这种方法需要不同于典型分类或回归任务的方法。近年来,用布尔推理的形式来表达双聚类目标已经成为可能。本文提出了一种新的、启发式的二值数据双聚类归纳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical heuristics for Boolean-reasoning-based binary bicluster induction

Biclustering is a two-dimensional data analysis technique that, applied to a matrix, searches for a subset of rows and columns that intersect to produce a submatrix with given, expected features. Such an approach requires different methods to those of typical classification or regression tasks. In recent years it has become possible to express biclustering goals in the form of Boolean reasoning. This paper presents a new, heuristic approach to bicluster induction in binary data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Informatica
Acta Informatica 工程技术-计算机:信息系统
CiteScore
2.40
自引率
16.70%
发文量
24
审稿时长
>12 weeks
期刊介绍: Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics. Topics of interest include: • semantics of programming languages • models and modeling languages for concurrent, distributed, reactive and mobile systems • models and modeling languages for timed, hybrid and probabilistic systems • specification, program analysis and verification • model checking and theorem proving • modal, temporal, first- and higher-order logics, and their variants • constraint logic, SAT/SMT-solving techniques • theoretical aspects of databases, semi-structured data and finite model theory • theoretical aspects of artificial intelligence, knowledge representation, description logic • automata theory, formal languages, term and graph rewriting • game-based models, synthesis • type theory, typed calculi • algebraic, coalgebraic and categorical methods • formal aspects of performance, dependability and reliability analysis • foundations of information and network security • parallel, distributed and randomized algorithms • design and analysis of algorithms • foundations of network and communication protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信