具有nemytskii型系数的McKean-Vlasov SDEs的强解

Pub Date : 2021-07-15 DOI:10.1214/23-ECP519
Sebastian Grube
{"title":"具有nemytskii型系数的McKean-Vlasov SDEs的强解","authors":"Sebastian Grube","doi":"10.1214/23-ECP519","DOIUrl":null,"url":null,"abstract":"We study a large class of McKean-Vlasov SDEs with drift and diffusion coefficient depending on the density of the solution's time marginal laws in a Nemytskii-type of way. A McKean-Vlasov SDE of this kind arises from the study of the associated nonlinear FPKE, for which is known that there exists a bounded Sobolev-regular Schwartz-distributional solution u. Via the superposition principle, it is already known that there exists a weak solution to the McKean-Vlasov SDE with time marginal densities u. We show that there exists a strong solution the McKean-Vlasov SDE, which is unique among weak solutions with time marginal densities u. The main tool is a restricted Yamada-Watanabe theorem for SDEs, which is obtained by an observation in the proof of the classic Yamada-Watanabe theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Strong solutions to McKean–Vlasov SDEs with coefficients of Nemytskii-type\",\"authors\":\"Sebastian Grube\",\"doi\":\"10.1214/23-ECP519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a large class of McKean-Vlasov SDEs with drift and diffusion coefficient depending on the density of the solution's time marginal laws in a Nemytskii-type of way. A McKean-Vlasov SDE of this kind arises from the study of the associated nonlinear FPKE, for which is known that there exists a bounded Sobolev-regular Schwartz-distributional solution u. Via the superposition principle, it is already known that there exists a weak solution to the McKean-Vlasov SDE with time marginal densities u. We show that there exists a strong solution the McKean-Vlasov SDE, which is unique among weak solutions with time marginal densities u. The main tool is a restricted Yamada-Watanabe theorem for SDEs, which is obtained by an observation in the proof of the classic Yamada-Watanabe theorem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ECP519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ECP519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们用nemytskii型的方法研究了一类漂移系数和扩散系数依赖于解的时间边际律密度的McKean-Vlasov SDEs。这类McKean-Vlasov SDE来源于相关非线性FPKE的研究,已知存在有界sobolev -正则schwarz -分布解u。通过叠加原理,已知存在具有时间边际密度u的McKean-Vlasov SDE的弱解。我们证明存在McKean-Vlasov SDE的强解。主要工具是SDEs的受限Yamada-Watanabe定理,该定理是在经典Yamada-Watanabe定理的证明中通过观察得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Strong solutions to McKean–Vlasov SDEs with coefficients of Nemytskii-type
We study a large class of McKean-Vlasov SDEs with drift and diffusion coefficient depending on the density of the solution's time marginal laws in a Nemytskii-type of way. A McKean-Vlasov SDE of this kind arises from the study of the associated nonlinear FPKE, for which is known that there exists a bounded Sobolev-regular Schwartz-distributional solution u. Via the superposition principle, it is already known that there exists a weak solution to the McKean-Vlasov SDE with time marginal densities u. We show that there exists a strong solution the McKean-Vlasov SDE, which is unique among weak solutions with time marginal densities u. The main tool is a restricted Yamada-Watanabe theorem for SDEs, which is obtained by an observation in the proof of the classic Yamada-Watanabe theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信