Lang Li, Yingchi Guo, Zhichao Zhang, Zijun Shang, Chen Li, Jiaqi Wang, Liliang Gao, L. Hai, Chunqing Gao, Shiyao Fu
{"title":"光子总角动量操纵","authors":"Lang Li, Yingchi Guo, Zhichao Zhang, Zijun Shang, Chen Li, Jiaqi Wang, Liliang Gao, L. Hai, Chunqing Gao, Shiyao Fu","doi":"10.1117/1.ap.5.5.056002","DOIUrl":null,"url":null,"abstract":". As an inherent degree of freedom, total angular momentum (TAM) of photons consisting of spin angular momentum and orbital angular momentum has inspired many advanced applications and attracted much attention in recent years. Probing TAM and tailoring beam ’ s TAM spectrum on demand are of great significance for TAM-based scenarios. We propose both theoretically and experimentally a TAM processor enabling tunable TAM manipulation. Such a processor consists of a set of quasi-symmetric units, and each unit is composed of a couple of diffraction optical elements fabricated through polymerized liquid crystals. Forty-two single TAM states are experimentally employed to prove the concept. The favorable results illustrate good TAM state selection performance, which makes it particularly attractive for high-speed large-capacity data transmission, optical computing, and high-security photon encryption systems.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":" ","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photon total angular momentum manipulation\",\"authors\":\"Lang Li, Yingchi Guo, Zhichao Zhang, Zijun Shang, Chen Li, Jiaqi Wang, Liliang Gao, L. Hai, Chunqing Gao, Shiyao Fu\",\"doi\":\"10.1117/1.ap.5.5.056002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". As an inherent degree of freedom, total angular momentum (TAM) of photons consisting of spin angular momentum and orbital angular momentum has inspired many advanced applications and attracted much attention in recent years. Probing TAM and tailoring beam ’ s TAM spectrum on demand are of great significance for TAM-based scenarios. We propose both theoretically and experimentally a TAM processor enabling tunable TAM manipulation. Such a processor consists of a set of quasi-symmetric units, and each unit is composed of a couple of diffraction optical elements fabricated through polymerized liquid crystals. Forty-two single TAM states are experimentally employed to prove the concept. The favorable results illustrate good TAM state selection performance, which makes it particularly attractive for high-speed large-capacity data transmission, optical computing, and high-security photon encryption systems.\",\"PeriodicalId\":33241,\"journal\":{\"name\":\"Advanced Photonics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.ap.5.5.056002\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.ap.5.5.056002","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
. As an inherent degree of freedom, total angular momentum (TAM) of photons consisting of spin angular momentum and orbital angular momentum has inspired many advanced applications and attracted much attention in recent years. Probing TAM and tailoring beam ’ s TAM spectrum on demand are of great significance for TAM-based scenarios. We propose both theoretically and experimentally a TAM processor enabling tunable TAM manipulation. Such a processor consists of a set of quasi-symmetric units, and each unit is composed of a couple of diffraction optical elements fabricated through polymerized liquid crystals. Forty-two single TAM states are experimentally employed to prove the concept. The favorable results illustrate good TAM state selection performance, which makes it particularly attractive for high-speed large-capacity data transmission, optical computing, and high-security photon encryption systems.
期刊介绍:
Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential.
The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria:
-New concepts in terms of fundamental research with great impact and significance
-State-of-the-art technologies in terms of novel methods for important applications
-Reviews of recent major advances and discoveries and state-of-the-art benchmarking.
The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.