油菜苗期耐低氮性状的全基因组关联研究

IF 0.8 4区 生物学 Q4 PLANT SCIENCES
C. Zeng, H. Wan, X. M. Wu, X. Dai, J. Chen, Q. Ji, F. Qian
{"title":"油菜苗期耐低氮性状的全基因组关联研究","authors":"C. Zeng, H. Wan, X. M. Wu, X. Dai, J. Chen, Q. Ji, F. Qian","doi":"10.32615/BP.2020.144","DOIUrl":null,"url":null,"abstract":"The large application of nitrogen fertilizer will cause soil deterioration and pollute the environment. Reduction of nitrogen inputs and maintaining high yields are therefore essential to ensure a more sustainable agriculture. However, little information is available about rapeseed (Brassica napus L.) low nitrogen tolerance. We evaluated low nitrogen tolerance of 304 rapeseed accessions at seedling stage and performed a genome-wide association study to detect low nitrogen tolerance-related quantitative trait loci. A natural population comprising 304 B. napus inbred lines was genotyped with a Brassica 60K Illumina Infinium SNP array. Finally, 11 single-nucleotide polymorphisms were associated with 3 low nitrogen tolerance-related traits, which explained 5.79 - 7.57 % of the phenotypic variation. In addition, three possible candidate genes were located near the genetic region. Our results provide valuable information for understanding the genetic control of rapeseed low nitrogen tolerance at seedling stage and may facilitate a marker-based breeding for rapeseed low nitrogen tolerance.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"10-18"},"PeriodicalIF":0.8000,"publicationDate":"2021-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Genome-wide association study of low nitrogen tolerance traits at the seedling stage of rapeseed\",\"authors\":\"C. Zeng, H. Wan, X. M. Wu, X. Dai, J. Chen, Q. Ji, F. Qian\",\"doi\":\"10.32615/BP.2020.144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large application of nitrogen fertilizer will cause soil deterioration and pollute the environment. Reduction of nitrogen inputs and maintaining high yields are therefore essential to ensure a more sustainable agriculture. However, little information is available about rapeseed (Brassica napus L.) low nitrogen tolerance. We evaluated low nitrogen tolerance of 304 rapeseed accessions at seedling stage and performed a genome-wide association study to detect low nitrogen tolerance-related quantitative trait loci. A natural population comprising 304 B. napus inbred lines was genotyped with a Brassica 60K Illumina Infinium SNP array. Finally, 11 single-nucleotide polymorphisms were associated with 3 low nitrogen tolerance-related traits, which explained 5.79 - 7.57 % of the phenotypic variation. In addition, three possible candidate genes were located near the genetic region. Our results provide valuable information for understanding the genetic control of rapeseed low nitrogen tolerance at seedling stage and may facilitate a marker-based breeding for rapeseed low nitrogen tolerance.\",\"PeriodicalId\":8912,\"journal\":{\"name\":\"Biologia Plantarum\",\"volume\":\"65 1\",\"pages\":\"10-18\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/BP.2020.144\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/BP.2020.144","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

大量施用氮肥会造成土壤劣化,污染环境。因此,减少氮投入和保持高产对于确保更可持续的农业至关重要。然而,关于油菜(Brassica napus L.)低氮耐受性的资料很少。本研究对304份油菜苗期低氮耐受性进行了评估,并进行了全基因组关联研究,以检测低氮耐受性相关的数量性状位点。利用Brassica 60K Illumina Infinium SNP阵列对304个甘蓝型油菜自交系自然群体进行基因分型。11个单核苷酸多态性与3个低氮耐受性相关性状相关,解释了5.79 ~ 7.57%的表型变异。此外,在遗传区域附近还发现了3个可能的候选基因。本研究结果为油菜苗期低氮耐受性的遗传控制提供了有价值的信息,并为油菜低氮耐受性的标记育种提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genome-wide association study of low nitrogen tolerance traits at the seedling stage of rapeseed
The large application of nitrogen fertilizer will cause soil deterioration and pollute the environment. Reduction of nitrogen inputs and maintaining high yields are therefore essential to ensure a more sustainable agriculture. However, little information is available about rapeseed (Brassica napus L.) low nitrogen tolerance. We evaluated low nitrogen tolerance of 304 rapeseed accessions at seedling stage and performed a genome-wide association study to detect low nitrogen tolerance-related quantitative trait loci. A natural population comprising 304 B. napus inbred lines was genotyped with a Brassica 60K Illumina Infinium SNP array. Finally, 11 single-nucleotide polymorphisms were associated with 3 low nitrogen tolerance-related traits, which explained 5.79 - 7.57 % of the phenotypic variation. In addition, three possible candidate genes were located near the genetic region. Our results provide valuable information for understanding the genetic control of rapeseed low nitrogen tolerance at seedling stage and may facilitate a marker-based breeding for rapeseed low nitrogen tolerance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biologia Plantarum
Biologia Plantarum 生物-植物科学
CiteScore
2.80
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信