中中新世盆地中部和山脉伸展时期的断裂与盆地演化:美国内华达州米德湖地区马泉组上部和红砂岩单元的详细记录

IF 1.7 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Geosphere Pub Date : 2022-08-26 DOI:10.1130/ges02463.1
M. Lamb, T. Hickson, P. Umhoefer, Zachary W. Anderson, C. Pomerleau, Katrina S. Souders, L. Lee, N. Dunbar, W. Mcintosh
{"title":"中中新世盆地中部和山脉伸展时期的断裂与盆地演化:美国内华达州米德湖地区马泉组上部和红砂岩单元的详细记录","authors":"M. Lamb, T. Hickson, P. Umhoefer, Zachary W. Anderson, C. Pomerleau, Katrina S. Souders, L. Lee, N. Dunbar, W. Mcintosh","doi":"10.1130/ges02463.1","DOIUrl":null,"url":null,"abstract":"Miocene basins of the Lake Mead region (southwestern United States) contain a well-exposed record of rifting and the evolving paleogeography of the eastern central Basin and Range. The middle Miocene Horse Spring Formation and red sandstone unit allow for detailed stratigraphic, chronostratigraphic, and structural analysis for better understanding the geologic history of extension in this region. We present new data from the White Basin and Lovell Wash areas (Nevada) to interpret the evolution of faulting, basin fill, and paleogeography. We conclude that tectonics strongly influenced sedimentation and hypothesize that climate may have played a secondary but important role in creating stratigraphic variations. Deposited from 14.5 to 13.86 Ma, the microbialitic Bitter Ridge Limestone Member of the Horse Spring Formation, the stratigraphically lowest unit in this study, records a widespread shallow and uniform lake which had moderate and steady sedimentation rates, both of which were controlled by a few faults. The persistent lake was broken up by fault reorganization followed by deposition of the highly variable fluvial-lacustrine facies of the Lovell Wash Member from 13.86 to 12.7 Ma. During this time, faulting shifted from the northeast-trending, oblique normal left-lateral White Basin fault to the northwest-trending, normal Muddy Peak fault and other smaller northwest-trending faults. The lower and middle portions of the red sandstone unit, 12.7–11.4 Ma, record an increase in the sedimentation rate of basin fill near the Muddy Peak fault as well as the return to widespread lacustrine conditions. Sedimentation and faulting slowed during deposition of the uppermost red sandstone unit, but some deformation occurred post–11.4 Ma. This study records basin-fill evolution including variations in depositional environments laterally and vertically, documents changes in the location and magnitude of faulting, supports earlier work that hypothesized faulting proceeded in discrete westward steps across the Lake Mead area, and helps constrain the paleogeographic and tectonic evolution of the region.","PeriodicalId":55100,"journal":{"name":"Geosphere","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Middle Miocene faulting and basin evolution during central Basin and Range extension: A detailed record from the upper Horse Spring Formation and red sandstone unit, Lake Mead region, Nevada, USA\",\"authors\":\"M. Lamb, T. Hickson, P. Umhoefer, Zachary W. Anderson, C. Pomerleau, Katrina S. Souders, L. Lee, N. Dunbar, W. Mcintosh\",\"doi\":\"10.1130/ges02463.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Miocene basins of the Lake Mead region (southwestern United States) contain a well-exposed record of rifting and the evolving paleogeography of the eastern central Basin and Range. The middle Miocene Horse Spring Formation and red sandstone unit allow for detailed stratigraphic, chronostratigraphic, and structural analysis for better understanding the geologic history of extension in this region. We present new data from the White Basin and Lovell Wash areas (Nevada) to interpret the evolution of faulting, basin fill, and paleogeography. We conclude that tectonics strongly influenced sedimentation and hypothesize that climate may have played a secondary but important role in creating stratigraphic variations. Deposited from 14.5 to 13.86 Ma, the microbialitic Bitter Ridge Limestone Member of the Horse Spring Formation, the stratigraphically lowest unit in this study, records a widespread shallow and uniform lake which had moderate and steady sedimentation rates, both of which were controlled by a few faults. The persistent lake was broken up by fault reorganization followed by deposition of the highly variable fluvial-lacustrine facies of the Lovell Wash Member from 13.86 to 12.7 Ma. During this time, faulting shifted from the northeast-trending, oblique normal left-lateral White Basin fault to the northwest-trending, normal Muddy Peak fault and other smaller northwest-trending faults. The lower and middle portions of the red sandstone unit, 12.7–11.4 Ma, record an increase in the sedimentation rate of basin fill near the Muddy Peak fault as well as the return to widespread lacustrine conditions. Sedimentation and faulting slowed during deposition of the uppermost red sandstone unit, but some deformation occurred post–11.4 Ma. This study records basin-fill evolution including variations in depositional environments laterally and vertically, documents changes in the location and magnitude of faulting, supports earlier work that hypothesized faulting proceeded in discrete westward steps across the Lake Mead area, and helps constrain the paleogeographic and tectonic evolution of the region.\",\"PeriodicalId\":55100,\"journal\":{\"name\":\"Geosphere\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1130/ges02463.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/ges02463.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

米德湖地区(美国西南部)的中新世盆地有一个很好的裂谷记录,以及中东部盆地和山脉的古地理演变。中新世中期的马泉组和红砂岩单元可以进行详细的地层、年代地层和结构分析,以更好地了解该地区的伸展地质历史。我们提供了来自White盆地和Lovell Wash地区(内华达州)的新数据,以解释断层、盆地填充和古地理的演变。我们得出的结论是,构造强烈影响了沉积作用,并假设气候可能在地层变化中发挥了次要但重要的作用。马泉组微生物Bitter Ridge石灰岩段沉积于14.5至13.86 Ma,是本研究中地层最低的单元,记录了一个广泛的浅而均匀的湖泊,其沉积速率适中且稳定,两者都受少数断层控制。在13.86至12.7 Ma期间,洛夫尔洼地段的断层重组和高度可变的河湖相沉积打破了持久性湖泊。在此期间,断层从东北走向、倾斜的正左侧White盆地断层向西北走向、正Muddy Peak断层和其他较小的西北走向断层转移。红砂岩单元的下部和中部,12.7–11.4 Ma,记录了Muddy Peak断层附近盆地填充物的沉积速率增加,并恢复到广泛的湖泊条件。沉积和断层作用在最上层红砂岩单元的沉积过程中减缓,但一些变形发生在-11.4Ma之后。本研究记录了盆地填充物的演变,包括沉积环境的横向和垂直变化,记录了断层作用的位置和大小的变化,支持了早期的工作,即假设断层活动在米德湖地区以离散的向西台阶进行,并有助于约束该地区的古地理和构造演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Middle Miocene faulting and basin evolution during central Basin and Range extension: A detailed record from the upper Horse Spring Formation and red sandstone unit, Lake Mead region, Nevada, USA
Miocene basins of the Lake Mead region (southwestern United States) contain a well-exposed record of rifting and the evolving paleogeography of the eastern central Basin and Range. The middle Miocene Horse Spring Formation and red sandstone unit allow for detailed stratigraphic, chronostratigraphic, and structural analysis for better understanding the geologic history of extension in this region. We present new data from the White Basin and Lovell Wash areas (Nevada) to interpret the evolution of faulting, basin fill, and paleogeography. We conclude that tectonics strongly influenced sedimentation and hypothesize that climate may have played a secondary but important role in creating stratigraphic variations. Deposited from 14.5 to 13.86 Ma, the microbialitic Bitter Ridge Limestone Member of the Horse Spring Formation, the stratigraphically lowest unit in this study, records a widespread shallow and uniform lake which had moderate and steady sedimentation rates, both of which were controlled by a few faults. The persistent lake was broken up by fault reorganization followed by deposition of the highly variable fluvial-lacustrine facies of the Lovell Wash Member from 13.86 to 12.7 Ma. During this time, faulting shifted from the northeast-trending, oblique normal left-lateral White Basin fault to the northwest-trending, normal Muddy Peak fault and other smaller northwest-trending faults. The lower and middle portions of the red sandstone unit, 12.7–11.4 Ma, record an increase in the sedimentation rate of basin fill near the Muddy Peak fault as well as the return to widespread lacustrine conditions. Sedimentation and faulting slowed during deposition of the uppermost red sandstone unit, but some deformation occurred post–11.4 Ma. This study records basin-fill evolution including variations in depositional environments laterally and vertically, documents changes in the location and magnitude of faulting, supports earlier work that hypothesized faulting proceeded in discrete westward steps across the Lake Mead area, and helps constrain the paleogeographic and tectonic evolution of the region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geosphere
Geosphere 地学-地球科学综合
CiteScore
4.40
自引率
12.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Geosphere is GSA''s ambitious, online-only publication that addresses the growing need for timely publication of research results, data, software, and educational developments in ways that cannot be addressed by traditional formats. The journal''s rigorously peer-reviewed, high-quality research papers target an international audience in all geoscience fields. Its innovative format encourages extensive use of color, animations, interactivity, and oversize figures (maps, cross sections, etc.), and provides easy access to resources such as GIS databases, data archives, and modeling results. Geosphere''s broad scope and variety of contributions is a refreshing addition to traditional journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信