{"title":"圆值函数的Reeb图:综述与基本事实","authors":"Irina Gelbukh","doi":"10.12775/tmna.2022.023","DOIUrl":null,"url":null,"abstract":"The Reeb graph of a circle-valued function is a topological space obtained by contracting connected components of level sets (preimages of points) to points.\nFor some smooth functions, the Reeb graph has the structure of a finite graph.\nThis notion finds numerous applications in the theory of dynamical systems, as well as in the topological classification of circle-valued functions and the study of their homotopy properties.\nHowever, important theoretical facts on the topological properties of the Reeb graphs of circle-valued functions are scattered across numerous papers on different topics, according to the specific needs of the corresponding application.\nIn this paper, we systematize the existing results on the Reeb graphs of circle-valued functions and generalize some of them to wider classes of functions or spaces.\nWe also show how some results can be carried out from real-valued functions. Finally, we adapt some facts from the theory of foliations to the Reeb graphs of circle-valued functions.\nIn particular, we analyze the cycle rank of the Reeb graph and address the problem of realization of a finite graph as a Reeb graph.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reeb graphs of circle-valued functions: A survey and basic facts\",\"authors\":\"Irina Gelbukh\",\"doi\":\"10.12775/tmna.2022.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Reeb graph of a circle-valued function is a topological space obtained by contracting connected components of level sets (preimages of points) to points.\\nFor some smooth functions, the Reeb graph has the structure of a finite graph.\\nThis notion finds numerous applications in the theory of dynamical systems, as well as in the topological classification of circle-valued functions and the study of their homotopy properties.\\nHowever, important theoretical facts on the topological properties of the Reeb graphs of circle-valued functions are scattered across numerous papers on different topics, according to the specific needs of the corresponding application.\\nIn this paper, we systematize the existing results on the Reeb graphs of circle-valued functions and generalize some of them to wider classes of functions or spaces.\\nWe also show how some results can be carried out from real-valued functions. Finally, we adapt some facts from the theory of foliations to the Reeb graphs of circle-valued functions.\\nIn particular, we analyze the cycle rank of the Reeb graph and address the problem of realization of a finite graph as a Reeb graph.\",\"PeriodicalId\":23130,\"journal\":{\"name\":\"Topological Methods in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Methods in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Reeb graphs of circle-valued functions: A survey and basic facts
The Reeb graph of a circle-valued function is a topological space obtained by contracting connected components of level sets (preimages of points) to points.
For some smooth functions, the Reeb graph has the structure of a finite graph.
This notion finds numerous applications in the theory of dynamical systems, as well as in the topological classification of circle-valued functions and the study of their homotopy properties.
However, important theoretical facts on the topological properties of the Reeb graphs of circle-valued functions are scattered across numerous papers on different topics, according to the specific needs of the corresponding application.
In this paper, we systematize the existing results on the Reeb graphs of circle-valued functions and generalize some of them to wider classes of functions or spaces.
We also show how some results can be carried out from real-valued functions. Finally, we adapt some facts from the theory of foliations to the Reeb graphs of circle-valued functions.
In particular, we analyze the cycle rank of the Reeb graph and address the problem of realization of a finite graph as a Reeb graph.
期刊介绍:
Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.