Ignacio García-Marco, Irene Márquez-Corbella, E. Martínez-Moro, Yuriko Pitones
{"title":"利用自由分辨率计算二进制线性码的广义汉明权重","authors":"Ignacio García-Marco, Irene Márquez-Corbella, E. Martínez-Moro, Yuriko Pitones","doi":"10.1145/3572867.3572868","DOIUrl":null,"url":null,"abstract":"In this work, we explore the relationship between free resolution of some monomial ideals and Generalized Hamming Weights (GHWs) of binary codes. More precisely, we look for a structure smaller than the set of codewords of minimal support that provides us some information about the GHWs. We prove that the first and second generalized Hamming weight of a binary linear code can be computed (by means of a graded free resolution) from a set of monomials associated to a binomial ideal related with the code. Moreover, the remaining weights are bounded by the Betti numbers for that set.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"56 1","pages":"19 - 24"},"PeriodicalIF":0.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing generalized hamming weights of binary linear codes via free resolutions\",\"authors\":\"Ignacio García-Marco, Irene Márquez-Corbella, E. Martínez-Moro, Yuriko Pitones\",\"doi\":\"10.1145/3572867.3572868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we explore the relationship between free resolution of some monomial ideals and Generalized Hamming Weights (GHWs) of binary codes. More precisely, we look for a structure smaller than the set of codewords of minimal support that provides us some information about the GHWs. We prove that the first and second generalized Hamming weight of a binary linear code can be computed (by means of a graded free resolution) from a set of monomials associated to a binomial ideal related with the code. Moreover, the remaining weights are bounded by the Betti numbers for that set.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"56 1\",\"pages\":\"19 - 24\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572867.3572868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572867.3572868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Computing generalized hamming weights of binary linear codes via free resolutions
In this work, we explore the relationship between free resolution of some monomial ideals and Generalized Hamming Weights (GHWs) of binary codes. More precisely, we look for a structure smaller than the set of codewords of minimal support that provides us some information about the GHWs. We prove that the first and second generalized Hamming weight of a binary linear code can be computed (by means of a graded free resolution) from a set of monomials associated to a binomial ideal related with the code. Moreover, the remaining weights are bounded by the Betti numbers for that set.