分数阶拉普拉斯方程的周期解:最小周期,轴对称和极限

Pub Date : 2022-12-10 DOI:10.12775/tmna.2022.016
Zhenping Feng, Zhuoran Du
{"title":"分数阶拉普拉斯方程的周期解:最小周期,轴对称和极限","authors":"Zhenping Feng, Zhuoran Du","doi":"10.12775/tmna.2022.016","DOIUrl":null,"url":null,"abstract":"We are concerned with periodic solutions of the fractional Laplace equation\n\\begin{equation*}\n{(-\\partial_{xx})^s}u(x)+F'(u(x))=0 \\quad \\mbox{in }\\mathbb{R},\n\\end{equation*}\nwhere $0< s< 1$. The smooth function $F$ is a double-well potential with wells at\n$+1$ and $-1$. We show that the value of least positive period is\n$2{\\pi}\\times({1}/{-F''(0)})^{{1}/({2s})}$.\n The axial symmetry of odd periodic solutions is obtained by moving plane method.\nWe also prove that odd periodic solutions $u_{T}(x)$ converge to a layer solution\n of the same equation as periods $T\\rightarrow+\\infty$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic solutions of fractional Laplace equations: Least period, axial symmetry and limit\",\"authors\":\"Zhenping Feng, Zhuoran Du\",\"doi\":\"10.12775/tmna.2022.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are concerned with periodic solutions of the fractional Laplace equation\\n\\\\begin{equation*}\\n{(-\\\\partial_{xx})^s}u(x)+F'(u(x))=0 \\\\quad \\\\mbox{in }\\\\mathbb{R},\\n\\\\end{equation*}\\nwhere $0< s< 1$. The smooth function $F$ is a double-well potential with wells at\\n$+1$ and $-1$. We show that the value of least positive period is\\n$2{\\\\pi}\\\\times({1}/{-F''(0)})^{{1}/({2s})}$.\\n The axial symmetry of odd periodic solutions is obtained by moving plane method.\\nWe also prove that odd periodic solutions $u_{T}(x)$ converge to a layer solution\\n of the same equation as periods $T\\\\rightarrow+\\\\infty$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们关注分数阶拉普拉斯方程的周期解\ begin{equation*}{(-\partial_{xx})^s}u(x)+F’(u(x。光滑函数$F$是具有$+1$和$-1$阱的双阱势。我们证明了最小正周期的值是$2{\pi}\times({1}/{-F‘'(0)})^{1}/({2s})}$。利用移动平面法得到了奇周期解的轴对称性。我们还证明了奇周期解$u_{T}(x)$收敛于与周期$T\rightarrow+\infty$相同的方程的层解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Periodic solutions of fractional Laplace equations: Least period, axial symmetry and limit
We are concerned with periodic solutions of the fractional Laplace equation \begin{equation*} {(-\partial_{xx})^s}u(x)+F'(u(x))=0 \quad \mbox{in }\mathbb{R}, \end{equation*} where $0< s< 1$. The smooth function $F$ is a double-well potential with wells at $+1$ and $-1$. We show that the value of least positive period is $2{\pi}\times({1}/{-F''(0)})^{{1}/({2s})}$. The axial symmetry of odd periodic solutions is obtained by moving plane method. We also prove that odd periodic solutions $u_{T}(x)$ converge to a layer solution of the same equation as periods $T\rightarrow+\infty$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信