瓷砖台球和戴尼可夫螺旋体

Q2 Mathematics
Olga Paris-Romaskevich
{"title":"瓷砖台球和戴尼可夫螺旋体","authors":"Olga Paris-Romaskevich","doi":"10.1090/mosc/317","DOIUrl":null,"url":null,"abstract":"Here are two problems. First, understanding the dynamics of a tiling billiard in a cyclic quadrilateral periodic tiling. Second, describing the topology of connected components of plane sections of a centrally symmetric subsurface \n\n \n \n S\n ⊂\n \n \n T\n \n 3\n \n \n S \\subset \\mathbb {T}^3\n \n\n of genus \n\n \n 3\n 3\n \n\n. In this paper we show that these two problems are related via a helicoidal construction proposed recently by Ivan Dynnikov. The second problem is a particular case of a classical question formulated by Sergei Novikov. The exploration of the relationship between a large class of tiling billiards (periodic locally foldable tiling billiards) and Novikov’s problem in higher genus seems promising, as we show at the end of this paper.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tiling billiards and Dynnikov’s helicoid\",\"authors\":\"Olga Paris-Romaskevich\",\"doi\":\"10.1090/mosc/317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here are two problems. First, understanding the dynamics of a tiling billiard in a cyclic quadrilateral periodic tiling. Second, describing the topology of connected components of plane sections of a centrally symmetric subsurface \\n\\n \\n \\n S\\n ⊂\\n \\n \\n T\\n \\n 3\\n \\n \\n S \\\\subset \\\\mathbb {T}^3\\n \\n\\n of genus \\n\\n \\n 3\\n 3\\n \\n\\n. In this paper we show that these two problems are related via a helicoidal construction proposed recently by Ivan Dynnikov. The second problem is a particular case of a classical question formulated by Sergei Novikov. The exploration of the relationship between a large class of tiling billiards (periodic locally foldable tiling billiards) and Novikov’s problem in higher genus seems promising, as we show at the end of this paper.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mosc/317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mosc/317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

这里有两个问题。首先,了解循环四边形周期平铺中平铺台球的动力学。其次,描述了亏格3 3的中心对称次表面S⊂T 3 S\subet \mathbb{T}^3的平面截面的连通分量的拓扑。在本文中,我们通过Ivan Dynnikov最近提出的螺旋结构证明了这两个问题是相关的。第二个问题是谢尔盖·诺维科夫提出的经典问题的一个特例。正如我们在本文末尾所展示的,探索一大类平铺台球(周期局部可折叠平铺台球)与更高属中的Novikov问题之间的关系似乎是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tiling billiards and Dynnikov’s helicoid
Here are two problems. First, understanding the dynamics of a tiling billiard in a cyclic quadrilateral periodic tiling. Second, describing the topology of connected components of plane sections of a centrally symmetric subsurface S ⊂ T 3 S \subset \mathbb {T}^3 of genus  3 3 . In this paper we show that these two problems are related via a helicoidal construction proposed recently by Ivan Dynnikov. The second problem is a particular case of a classical question formulated by Sergei Novikov. The exploration of the relationship between a large class of tiling billiards (periodic locally foldable tiling billiards) and Novikov’s problem in higher genus seems promising, as we show at the end of this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信