{"title":"伪全纯曲线的不变概率测度Ⅱ:伪全纯的曲线构造","authors":"Rohil Prasad","doi":"10.3934/jmd.2023003","DOIUrl":null,"url":null,"abstract":"In the previous work, we introduced a method for constructing invariant probability measures of a large class of non-singular volume-preserving flows on closed, oriented odd-dimensional smooth manifolds with pseudoholomorphic curve techniques from symplectic geometry. The technique requires existence of certain pseudoholomorphic curves satisfying some weak assumptions. In this work, we appeal to Gromov-Witten theory and Seiberg-Witten theory to construct large classes of examples where these pseudoholomorphic curves exist. Our argument uses neck stretching along with new analytical tools from Fish-Hofer's work on feral pseudoholomorphic curves.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Invariant probability measures from pseudoholomorphic curves Ⅱ: Pseudoholomorphic curve constructions\",\"authors\":\"Rohil Prasad\",\"doi\":\"10.3934/jmd.2023003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the previous work, we introduced a method for constructing invariant probability measures of a large class of non-singular volume-preserving flows on closed, oriented odd-dimensional smooth manifolds with pseudoholomorphic curve techniques from symplectic geometry. The technique requires existence of certain pseudoholomorphic curves satisfying some weak assumptions. In this work, we appeal to Gromov-Witten theory and Seiberg-Witten theory to construct large classes of examples where these pseudoholomorphic curves exist. Our argument uses neck stretching along with new analytical tools from Fish-Hofer's work on feral pseudoholomorphic curves.\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2023003\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2023003","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Invariant probability measures from pseudoholomorphic curves Ⅱ: Pseudoholomorphic curve constructions
In the previous work, we introduced a method for constructing invariant probability measures of a large class of non-singular volume-preserving flows on closed, oriented odd-dimensional smooth manifolds with pseudoholomorphic curve techniques from symplectic geometry. The technique requires existence of certain pseudoholomorphic curves satisfying some weak assumptions. In this work, we appeal to Gromov-Witten theory and Seiberg-Witten theory to construct large classes of examples where these pseudoholomorphic curves exist. Our argument uses neck stretching along with new analytical tools from Fish-Hofer's work on feral pseudoholomorphic curves.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.