Christian Napoli, Samuele Russo, L. Iocchi, Nicolo’ Brandizzi, Simone Tedeschi, Sveva Pepe
{"title":"使用自定义数据集训练的基于gan的数据增强技术的机器学习方法的人类注意力评估","authors":"Christian Napoli, Samuele Russo, L. Iocchi, Nicolo’ Brandizzi, Simone Tedeschi, Sveva Pepe","doi":"10.21926/obm.neurobiol.2203139","DOIUrl":null,"url":null,"abstract":"Human–robot interactions require the ability of the system to determine if the user is paying attention. However, to train such systems, massive amounts of data are required. In this study, we addressed the issue of data scarcity by constructing a large dataset (containing ~120,000 photographs) for the attention detection task. Then, by using this dataset, we established a powerful baseline system. In addition, we extended the proposed system by adding an auxiliary face detection module and introducing a unique GAN-based data augmentation technique. Experimental results revealed that the proposed system yields superior performance compared to baseline models and achieves an accuracy of 88% on the test set. Finally, we created a web application for testing the proposed model in real time.","PeriodicalId":74334,"journal":{"name":"OBM neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Human Attention Assessment Using A Machine Learning Approach with GAN-based Data Augmentation Technique Trained Using a Custom Dataset\",\"authors\":\"Christian Napoli, Samuele Russo, L. Iocchi, Nicolo’ Brandizzi, Simone Tedeschi, Sveva Pepe\",\"doi\":\"10.21926/obm.neurobiol.2203139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human–robot interactions require the ability of the system to determine if the user is paying attention. However, to train such systems, massive amounts of data are required. In this study, we addressed the issue of data scarcity by constructing a large dataset (containing ~120,000 photographs) for the attention detection task. Then, by using this dataset, we established a powerful baseline system. In addition, we extended the proposed system by adding an auxiliary face detection module and introducing a unique GAN-based data augmentation technique. Experimental results revealed that the proposed system yields superior performance compared to baseline models and achieves an accuracy of 88% on the test set. Finally, we created a web application for testing the proposed model in real time.\",\"PeriodicalId\":74334,\"journal\":{\"name\":\"OBM neurobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OBM neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/obm.neurobiol.2203139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OBM neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/obm.neurobiol.2203139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human Attention Assessment Using A Machine Learning Approach with GAN-based Data Augmentation Technique Trained Using a Custom Dataset
Human–robot interactions require the ability of the system to determine if the user is paying attention. However, to train such systems, massive amounts of data are required. In this study, we addressed the issue of data scarcity by constructing a large dataset (containing ~120,000 photographs) for the attention detection task. Then, by using this dataset, we established a powerful baseline system. In addition, we extended the proposed system by adding an auxiliary face detection module and introducing a unique GAN-based data augmentation technique. Experimental results revealed that the proposed system yields superior performance compared to baseline models and achieves an accuracy of 88% on the test set. Finally, we created a web application for testing the proposed model in real time.