使用自定义数据集训练的基于gan的数据增强技术的机器学习方法的人类注意力评估

Christian Napoli, Samuele Russo, L. Iocchi, Nicolo’ Brandizzi, Simone Tedeschi, Sveva Pepe
{"title":"使用自定义数据集训练的基于gan的数据增强技术的机器学习方法的人类注意力评估","authors":"Christian Napoli, Samuele Russo, L. Iocchi, Nicolo’ Brandizzi, Simone Tedeschi, Sveva Pepe","doi":"10.21926/obm.neurobiol.2203139","DOIUrl":null,"url":null,"abstract":"Human–robot interactions require the ability of the system to determine if the user is paying attention. However, to train such systems, massive amounts of data are required. In this study, we addressed the issue of data scarcity by constructing a large dataset (containing ~120,000 photographs) for the attention detection task. Then, by using this dataset, we established a powerful baseline system. In addition, we extended the proposed system by adding an auxiliary face detection module and introducing a unique GAN-based data augmentation technique. Experimental results revealed that the proposed system yields superior performance compared to baseline models and achieves an accuracy of 88% on the test set. Finally, we created a web application for testing the proposed model in real time.","PeriodicalId":74334,"journal":{"name":"OBM neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Human Attention Assessment Using A Machine Learning Approach with GAN-based Data Augmentation Technique Trained Using a Custom Dataset\",\"authors\":\"Christian Napoli, Samuele Russo, L. Iocchi, Nicolo’ Brandizzi, Simone Tedeschi, Sveva Pepe\",\"doi\":\"10.21926/obm.neurobiol.2203139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human–robot interactions require the ability of the system to determine if the user is paying attention. However, to train such systems, massive amounts of data are required. In this study, we addressed the issue of data scarcity by constructing a large dataset (containing ~120,000 photographs) for the attention detection task. Then, by using this dataset, we established a powerful baseline system. In addition, we extended the proposed system by adding an auxiliary face detection module and introducing a unique GAN-based data augmentation technique. Experimental results revealed that the proposed system yields superior performance compared to baseline models and achieves an accuracy of 88% on the test set. Finally, we created a web application for testing the proposed model in real time.\",\"PeriodicalId\":74334,\"journal\":{\"name\":\"OBM neurobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OBM neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/obm.neurobiol.2203139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OBM neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/obm.neurobiol.2203139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

人机交互需要系统能够确定用户是否在集中注意力。然而,要训练这样的系统,需要大量的数据。在本研究中,我们通过构建一个大型数据集(包含约120,000张照片)来解决注意力检测任务的数据稀缺问题。然后,利用该数据集,我们建立了一个强大的基线系统。此外,我们通过增加辅助人脸检测模块和引入独特的基于gan的数据增强技术来扩展所提出的系统。实验结果表明,与基线模型相比,所提出的系统具有优越的性能,在测试集上达到了88%的准确率。最后,我们创建了一个web应用程序来实时测试所提出的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Attention Assessment Using A Machine Learning Approach with GAN-based Data Augmentation Technique Trained Using a Custom Dataset
Human–robot interactions require the ability of the system to determine if the user is paying attention. However, to train such systems, massive amounts of data are required. In this study, we addressed the issue of data scarcity by constructing a large dataset (containing ~120,000 photographs) for the attention detection task. Then, by using this dataset, we established a powerful baseline system. In addition, we extended the proposed system by adding an auxiliary face detection module and introducing a unique GAN-based data augmentation technique. Experimental results revealed that the proposed system yields superior performance compared to baseline models and achieves an accuracy of 88% on the test set. Finally, we created a web application for testing the proposed model in real time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信