{"title":"AA7075/TaC/Si3N4/Ti复合金属基复合材料的力学和磨损性能研究","authors":"J. Kumar, D. Smart","doi":"10.4018/ijseims.2022010105","DOIUrl":null,"url":null,"abstract":"This research article focuses on the development of AA7075 alloy reinforced with different wt% of Tantalum Carbide (TaC), Silicon Nitride (Si3N4) and Titanium (Ti) particulates using stir casting. Mechanical characteristics like tensile, compression and microhardness of the developed composites were analysed. High temperature tribological properties of the hybrid MMCs were studied for various input control factors like sliding speed, load and temperature. Design analysis has been executed by Taguchi orthogonal array and ANOVA (Analysis of Variance). The incorporated reinforcements exhibited improved wear resistance at ambient temperature along with elevated temperatures. Monolithic dissemination of reinforcement’s in the prepared composites magnifies the mechanical and tribological characteristics for composites compared to matrix material. From the optimization technique, it was witnessed that Wear Rate and Frictional Coefficient are afflicted by temperature go after load & sliding speed. The optimal amalgamation of control parameters of distinct tribo-responses has been detected.","PeriodicalId":37123,"journal":{"name":"International Journal of Surface Engineering and Interdisciplinary Materials Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Mechanical and Wear Behaviour of AA7075/TaC/Si3N4/Ti Hybrid Metal Matrix Composites\",\"authors\":\"J. Kumar, D. Smart\",\"doi\":\"10.4018/ijseims.2022010105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research article focuses on the development of AA7075 alloy reinforced with different wt% of Tantalum Carbide (TaC), Silicon Nitride (Si3N4) and Titanium (Ti) particulates using stir casting. Mechanical characteristics like tensile, compression and microhardness of the developed composites were analysed. High temperature tribological properties of the hybrid MMCs were studied for various input control factors like sliding speed, load and temperature. Design analysis has been executed by Taguchi orthogonal array and ANOVA (Analysis of Variance). The incorporated reinforcements exhibited improved wear resistance at ambient temperature along with elevated temperatures. Monolithic dissemination of reinforcement’s in the prepared composites magnifies the mechanical and tribological characteristics for composites compared to matrix material. From the optimization technique, it was witnessed that Wear Rate and Frictional Coefficient are afflicted by temperature go after load & sliding speed. The optimal amalgamation of control parameters of distinct tribo-responses has been detected.\",\"PeriodicalId\":37123,\"journal\":{\"name\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijseims.2022010105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Engineering and Interdisciplinary Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijseims.2022010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Study on Mechanical and Wear Behaviour of AA7075/TaC/Si3N4/Ti Hybrid Metal Matrix Composites
This research article focuses on the development of AA7075 alloy reinforced with different wt% of Tantalum Carbide (TaC), Silicon Nitride (Si3N4) and Titanium (Ti) particulates using stir casting. Mechanical characteristics like tensile, compression and microhardness of the developed composites were analysed. High temperature tribological properties of the hybrid MMCs were studied for various input control factors like sliding speed, load and temperature. Design analysis has been executed by Taguchi orthogonal array and ANOVA (Analysis of Variance). The incorporated reinforcements exhibited improved wear resistance at ambient temperature along with elevated temperatures. Monolithic dissemination of reinforcement’s in the prepared composites magnifies the mechanical and tribological characteristics for composites compared to matrix material. From the optimization technique, it was witnessed that Wear Rate and Frictional Coefficient are afflicted by temperature go after load & sliding speed. The optimal amalgamation of control parameters of distinct tribo-responses has been detected.