关于无界可换Jacobi算子及其相关问题

IF 0.3 Q4 MATHEMATICS
A. Osipov
{"title":"关于无界可换Jacobi算子及其相关问题","authors":"A. Osipov","doi":"10.1515/conop-2019-0008","DOIUrl":null,"url":null,"abstract":"Abstract We consider the situations, when two unbounded operators generated by infinite Jacobi matrices, are self-adjoint and commute. It is found that if two Jacobi matrices formally commute, then two corresponding operators are either self-adjoint and commute, or admit a commuting self-adjoint extensions. In the latter case such extensions are explicitly described. Also, some necessary and sufficient conditions for self-adjointness of Jacobi operators are studied.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"6 1","pages":"82 - 91"},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2019-0008","citationCount":"3","resultStr":"{\"title\":\"On unbounded commuting Jacobi operators and some related issues\",\"authors\":\"A. Osipov\",\"doi\":\"10.1515/conop-2019-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the situations, when two unbounded operators generated by infinite Jacobi matrices, are self-adjoint and commute. It is found that if two Jacobi matrices formally commute, then two corresponding operators are either self-adjoint and commute, or admit a commuting self-adjoint extensions. In the latter case such extensions are explicitly described. Also, some necessary and sufficient conditions for self-adjointness of Jacobi operators are studied.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"6 1\",\"pages\":\"82 - 91\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2019-0008\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2019-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2019-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要我们考虑了由无限Jacobi矩阵生成的两个无界算子是自伴随和可交换的情况。研究发现,如果两个Jacobi矩阵形式上可交换,那么两个相应的算子要么是自伴随和可交换的,要么是可交换的自伴随扩展。在后一种情况下,明确描述了这种扩展。此外,还研究了Jacobi算子自邻接的一些充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On unbounded commuting Jacobi operators and some related issues
Abstract We consider the situations, when two unbounded operators generated by infinite Jacobi matrices, are self-adjoint and commute. It is found that if two Jacobi matrices formally commute, then two corresponding operators are either self-adjoint and commute, or admit a commuting self-adjoint extensions. In the latter case such extensions are explicitly described. Also, some necessary and sufficient conditions for self-adjointness of Jacobi operators are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信