{"title":"关于无界可换Jacobi算子及其相关问题","authors":"A. Osipov","doi":"10.1515/conop-2019-0008","DOIUrl":null,"url":null,"abstract":"Abstract We consider the situations, when two unbounded operators generated by infinite Jacobi matrices, are self-adjoint and commute. It is found that if two Jacobi matrices formally commute, then two corresponding operators are either self-adjoint and commute, or admit a commuting self-adjoint extensions. In the latter case such extensions are explicitly described. Also, some necessary and sufficient conditions for self-adjointness of Jacobi operators are studied.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"6 1","pages":"82 - 91"},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2019-0008","citationCount":"3","resultStr":"{\"title\":\"On unbounded commuting Jacobi operators and some related issues\",\"authors\":\"A. Osipov\",\"doi\":\"10.1515/conop-2019-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the situations, when two unbounded operators generated by infinite Jacobi matrices, are self-adjoint and commute. It is found that if two Jacobi matrices formally commute, then two corresponding operators are either self-adjoint and commute, or admit a commuting self-adjoint extensions. In the latter case such extensions are explicitly described. Also, some necessary and sufficient conditions for self-adjointness of Jacobi operators are studied.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"6 1\",\"pages\":\"82 - 91\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2019-0008\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2019-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2019-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On unbounded commuting Jacobi operators and some related issues
Abstract We consider the situations, when two unbounded operators generated by infinite Jacobi matrices, are self-adjoint and commute. It is found that if two Jacobi matrices formally commute, then two corresponding operators are either self-adjoint and commute, or admit a commuting self-adjoint extensions. In the latter case such extensions are explicitly described. Also, some necessary and sufficient conditions for self-adjointness of Jacobi operators are studied.