{"title":"种质改良和品种发展:可持续育种的需要","authors":"M. Carena","doi":"10.1590/1984-70332021v21sa17","DOIUrl":null,"url":null,"abstract":"Abstract: Farmers need sustainable cultivars to increase food supply and value with less production land, animals, and inputs. Next generation plant and animal breeders face climate change adaptation and mitigation challenges. These challenges need to be addressed with opportunities for significant reduction of environmental impact developing cultivars less addicted to fertilizers and soil moisture needs. Sustainable breeding can help balance agriculture with the environment. Sustainable breeders need to integrate long-term pre-breeding activities with cultivar development efforts providing farmers options to comply with environmental regulations. Good choice of germplasm is still the most important decision. The most sophisticated tools will have limited success if poor choices of germplasm are made. Seed companies need capable breeders developing the next generation of sustainable cultivars while public institutions need to mentor sustainable breeders capable to not only broadening and improving unique germplasm but also developing new cultivars carrying desirable traits. Graduates mentored in breeding programs integrating these needs will be selected for industry jobs without need for re-training. Sustainable breeders will need to operate in new breeding centers located in strategic environments for faster genetic improvement ahead of climate changes. Key factors for developing useful and unique sustainable cultivars will be the adaptation of exotic germplasm and the maximization of its genetic improvement before cultivar development through public and private partnerships. Inbreeding, genetic divergence, and reciprocal recurrent selection programs will continue to be essential to purify cultivars and exploit heterosis in economically important species.","PeriodicalId":10763,"journal":{"name":"Crop Breeding and Applied Biotechnology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Germplasm enhancement and cultivar development: The need for sustainable breeding\",\"authors\":\"M. Carena\",\"doi\":\"10.1590/1984-70332021v21sa17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: Farmers need sustainable cultivars to increase food supply and value with less production land, animals, and inputs. Next generation plant and animal breeders face climate change adaptation and mitigation challenges. These challenges need to be addressed with opportunities for significant reduction of environmental impact developing cultivars less addicted to fertilizers and soil moisture needs. Sustainable breeding can help balance agriculture with the environment. Sustainable breeders need to integrate long-term pre-breeding activities with cultivar development efforts providing farmers options to comply with environmental regulations. Good choice of germplasm is still the most important decision. The most sophisticated tools will have limited success if poor choices of germplasm are made. Seed companies need capable breeders developing the next generation of sustainable cultivars while public institutions need to mentor sustainable breeders capable to not only broadening and improving unique germplasm but also developing new cultivars carrying desirable traits. Graduates mentored in breeding programs integrating these needs will be selected for industry jobs without need for re-training. Sustainable breeders will need to operate in new breeding centers located in strategic environments for faster genetic improvement ahead of climate changes. Key factors for developing useful and unique sustainable cultivars will be the adaptation of exotic germplasm and the maximization of its genetic improvement before cultivar development through public and private partnerships. Inbreeding, genetic divergence, and reciprocal recurrent selection programs will continue to be essential to purify cultivars and exploit heterosis in economically important species.\",\"PeriodicalId\":10763,\"journal\":{\"name\":\"Crop Breeding and Applied Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Breeding and Applied Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/1984-70332021v21sa17\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Breeding and Applied Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1984-70332021v21sa17","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Germplasm enhancement and cultivar development: The need for sustainable breeding
Abstract: Farmers need sustainable cultivars to increase food supply and value with less production land, animals, and inputs. Next generation plant and animal breeders face climate change adaptation and mitigation challenges. These challenges need to be addressed with opportunities for significant reduction of environmental impact developing cultivars less addicted to fertilizers and soil moisture needs. Sustainable breeding can help balance agriculture with the environment. Sustainable breeders need to integrate long-term pre-breeding activities with cultivar development efforts providing farmers options to comply with environmental regulations. Good choice of germplasm is still the most important decision. The most sophisticated tools will have limited success if poor choices of germplasm are made. Seed companies need capable breeders developing the next generation of sustainable cultivars while public institutions need to mentor sustainable breeders capable to not only broadening and improving unique germplasm but also developing new cultivars carrying desirable traits. Graduates mentored in breeding programs integrating these needs will be selected for industry jobs without need for re-training. Sustainable breeders will need to operate in new breeding centers located in strategic environments for faster genetic improvement ahead of climate changes. Key factors for developing useful and unique sustainable cultivars will be the adaptation of exotic germplasm and the maximization of its genetic improvement before cultivar development through public and private partnerships. Inbreeding, genetic divergence, and reciprocal recurrent selection programs will continue to be essential to purify cultivars and exploit heterosis in economically important species.
期刊介绍:
The CBAB – CROP BREEDING AND APPLIED BIOTECHNOLOGY (ISSN 1984-7033) – is the official quarterly journal of the Brazilian Society of Plant Breeding, abbreviated CROP BREED APPL BIOTECHNOL.
It publishes original scientific articles, which contribute to the scientific and technological development of plant breeding and agriculture. Articles should be to do with basic and applied research on improvement of perennial and annual plants, within the fields of genetics, conservation of germplasm, biotechnology, genomics, cytogenetics, experimental statistics, seeds, food quality, biotic and abiotic stress, and correlated areas. The article must be unpublished. Simultaneous submitting to another periodical is ruled out. Authors are held solely responsible for the opinions and ideas expressed, which do not necessarily reflect the view of the Editorial board. However, the Editorial board reserves the right to suggest or ask for any modifications required. The journal adopts the Ithenticate software for identification of plagiarism. Complete or partial reproduction of articles is permitted, provided the source is cited. All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY. All articles are published free of charge. This is an open access journal.