不同切削条件下AISI 1040车削表面分形维数的优化

Q4 Materials Science
Arkadeb Mukhopadhyay, M. Barman, P. Sahoo
{"title":"不同切削条件下AISI 1040车削表面分形维数的优化","authors":"Arkadeb Mukhopadhyay, M. Barman, P. Sahoo","doi":"10.4018/IJSEIMS.2019070102","DOIUrl":null,"url":null,"abstract":"The present work examines the effect of turning process parameters, namely depth of cut and feed rate on the fractal dimension of AISI 1040 steel. Machined surfaces have been characterized using fractal dimensions. Apart from the aforesaid conventional turning parameters, cutting condition has been also considered as a design variable. Three cutting conditions have been considered, e.g. dry, water lubricated, and commercially available water-soluble emulsion lubricated condition. The depth of cut and feed rate has been also been varied at three levels. Experiments were performed following Taguchi's L9 orthogonal array. The optimal setting of process parameters has been achieved through the use of Taguchi's quality loss function represented by a signal-to-noise ratio. The optimal condition predicted from Taguchi's analysis is a 0.4 mm depth of cut, a 0.07 mm/rev feed rate and a water-based emulsion cutting environment. The results obtained for fractal dimensions has been also compared with the more conventional roughness parameter centre line average roughness which is dependent on instrument resolution.","PeriodicalId":37123,"journal":{"name":"International Journal of Surface Engineering and Interdisciplinary Materials Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/IJSEIMS.2019070102","citationCount":"2","resultStr":"{\"title\":\"Optimization of Fractal Dimension of Turned AISI 1040 Steel Surface Considering Different Cutting Conditions\",\"authors\":\"Arkadeb Mukhopadhyay, M. Barman, P. Sahoo\",\"doi\":\"10.4018/IJSEIMS.2019070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work examines the effect of turning process parameters, namely depth of cut and feed rate on the fractal dimension of AISI 1040 steel. Machined surfaces have been characterized using fractal dimensions. Apart from the aforesaid conventional turning parameters, cutting condition has been also considered as a design variable. Three cutting conditions have been considered, e.g. dry, water lubricated, and commercially available water-soluble emulsion lubricated condition. The depth of cut and feed rate has been also been varied at three levels. Experiments were performed following Taguchi's L9 orthogonal array. The optimal setting of process parameters has been achieved through the use of Taguchi's quality loss function represented by a signal-to-noise ratio. The optimal condition predicted from Taguchi's analysis is a 0.4 mm depth of cut, a 0.07 mm/rev feed rate and a water-based emulsion cutting environment. The results obtained for fractal dimensions has been also compared with the more conventional roughness parameter centre line average roughness which is dependent on instrument resolution.\",\"PeriodicalId\":37123,\"journal\":{\"name\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4018/IJSEIMS.2019070102\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSEIMS.2019070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Engineering and Interdisciplinary Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSEIMS.2019070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

摘要

研究了车削工艺参数,即切削深度和进给速度对AISI 1040钢分形维数的影响。已使用分形维数对加工表面进行了表征。除了上述常规车削参数外,切削条件也被视为设计变量。已经考虑了三种切割条件,例如干燥、水润滑和市售的水溶性乳液润滑条件。切割深度和进给速度也在三个级别上有所不同。实验按照田口L9正交阵列进行。通过使用由信噪比表示的田口质量损失函数,实现了工艺参数的最佳设置。根据田口的分析预测的最佳条件是0.4mm的切割深度、0.07mm/rev的进给速率和水基乳液切割环境。分形维数的结果也与更传统的粗糙度参数中心线平均粗糙度进行了比较,后者取决于仪器分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Fractal Dimension of Turned AISI 1040 Steel Surface Considering Different Cutting Conditions
The present work examines the effect of turning process parameters, namely depth of cut and feed rate on the fractal dimension of AISI 1040 steel. Machined surfaces have been characterized using fractal dimensions. Apart from the aforesaid conventional turning parameters, cutting condition has been also considered as a design variable. Three cutting conditions have been considered, e.g. dry, water lubricated, and commercially available water-soluble emulsion lubricated condition. The depth of cut and feed rate has been also been varied at three levels. Experiments were performed following Taguchi's L9 orthogonal array. The optimal setting of process parameters has been achieved through the use of Taguchi's quality loss function represented by a signal-to-noise ratio. The optimal condition predicted from Taguchi's analysis is a 0.4 mm depth of cut, a 0.07 mm/rev feed rate and a water-based emulsion cutting environment. The results obtained for fractal dimensions has been also compared with the more conventional roughness parameter centre line average roughness which is dependent on instrument resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信