齐次离散时间非线性马尔可夫链的一种新的收敛速度估计

IF 0.3 Q4 STATISTICS & PROBABILITY
A. Shchegolev
{"title":"齐次离散时间非线性马尔可夫链的一种新的收敛速度估计","authors":"A. Shchegolev","doi":"10.1515/rose-2022-2084","DOIUrl":null,"url":null,"abstract":"Abstract In the paper, we study a new rate of convergence estimate for homogeneous discrete-time nonlinear Markov chains based on the Markov–Dobrushin condition. This result generalizes the convergence estimates for any positive number of transition steps. An example of a class of processes is provided to point that such estimates considering several transition steps may be applicable when one transition can not guarantee any convergence. Moreover, a better estimate can be obtained for a higher number of transitions steps. A law of large numbers is presented for a class of ergodic nonlinear Markov chains with finite state space that may serve as a basis for nonparametric estimation and other statistics.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"30 1","pages":"205 - 213"},"PeriodicalIF":0.3000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new rate of convergence estimate for homogeneous discrete-time nonlinear Markov chains\",\"authors\":\"A. Shchegolev\",\"doi\":\"10.1515/rose-2022-2084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the paper, we study a new rate of convergence estimate for homogeneous discrete-time nonlinear Markov chains based on the Markov–Dobrushin condition. This result generalizes the convergence estimates for any positive number of transition steps. An example of a class of processes is provided to point that such estimates considering several transition steps may be applicable when one transition can not guarantee any convergence. Moreover, a better estimate can be obtained for a higher number of transitions steps. A law of large numbers is presented for a class of ergodic nonlinear Markov chains with finite state space that may serve as a basis for nonparametric estimation and other statistics.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"30 1\",\"pages\":\"205 - 213\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2022-2084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2022-2084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了基于Markov - dobrushin条件的齐次离散非线性Markov链的一种新的收敛速率估计。这个结果推广了任意正数过渡步的收敛估计。提供了一类过程的示例,以指出当一个转换不能保证任何收敛时,这种考虑几个转换步骤的估计可能适用。此外,对于更高数量的转换步骤,可以获得更好的估计。给出了一类有限状态空间的遍历非线性马尔可夫链的大数定律,该定律可作为非参数估计和其他统计的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new rate of convergence estimate for homogeneous discrete-time nonlinear Markov chains
Abstract In the paper, we study a new rate of convergence estimate for homogeneous discrete-time nonlinear Markov chains based on the Markov–Dobrushin condition. This result generalizes the convergence estimates for any positive number of transition steps. An example of a class of processes is provided to point that such estimates considering several transition steps may be applicable when one transition can not guarantee any convergence. Moreover, a better estimate can be obtained for a higher number of transitions steps. A law of large numbers is presented for a class of ergodic nonlinear Markov chains with finite state space that may serve as a basis for nonparametric estimation and other statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信