修正极大似然法估计Morgenstern型双变量关联参数

IF 0.6 Q4 STATISTICS & PROBABILITY
M. A. Kadiri, Mohammad Migdadi
{"title":"修正极大似然法估计Morgenstern型双变量关联参数","authors":"M. A. Kadiri, Mohammad Migdadi","doi":"10.1285/I20705948V12N1P176","DOIUrl":null,"url":null,"abstract":"This paper investigates estimating the association parameter of Morgenstern type bivariate distribution using a modified maximum likelihood method where the regular maximum likelihood methods failed to achieve estimation. The simple random sampling, concomitant of ordered statistics and bivariate ranked set sampling methods are used and compared. Efficiency and bias of the produced estimators are compared for two specific examples, Morgenstern type bivariate uniform and exponential distributions.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"12 1","pages":"176-189"},"PeriodicalIF":0.6000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V12N1P176","citationCount":"1","resultStr":"{\"title\":\"Estimating Morgenstern Type Bivariate Association Parameter Using a Modified Maximum Likelihood Method\",\"authors\":\"M. A. Kadiri, Mohammad Migdadi\",\"doi\":\"10.1285/I20705948V12N1P176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates estimating the association parameter of Morgenstern type bivariate distribution using a modified maximum likelihood method where the regular maximum likelihood methods failed to achieve estimation. The simple random sampling, concomitant of ordered statistics and bivariate ranked set sampling methods are used and compared. Efficiency and bias of the produced estimators are compared for two specific examples, Morgenstern type bivariate uniform and exponential distributions.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"12 1\",\"pages\":\"176-189\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1285/I20705948V12N1P176\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V12N1P176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V12N1P176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了在常规最大似然方法无法实现估计的情况下,使用改进的最大似然方法估计Morgenstern型二元分布的关联参数。使用并比较了简单随机抽样、伴随有序统计和二变量排序集抽样方法。比较了Morgenstern型二变量均匀分布和指数分布两个具体例子的估计量的有效性和偏倚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Morgenstern Type Bivariate Association Parameter Using a Modified Maximum Likelihood Method
This paper investigates estimating the association parameter of Morgenstern type bivariate distribution using a modified maximum likelihood method where the regular maximum likelihood methods failed to achieve estimation. The simple random sampling, concomitant of ordered statistics and bivariate ranked set sampling methods are used and compared. Efficiency and bias of the produced estimators are compared for two specific examples, Morgenstern type bivariate uniform and exponential distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信