在宏观流动框架下对路面凹坑进行建模

IF 0.4 Q4 MATHEMATICS, APPLIED
Gabriel Obed Fosu, J. Opong, B. E. Owusu, S. Naandam
{"title":"在宏观流动框架下对路面凹坑进行建模","authors":"Gabriel Obed Fosu, J. Opong, B. E. Owusu, S. Naandam","doi":"10.5206/mase/14625","DOIUrl":null,"url":null,"abstract":"The continual wearing of road surfaces results to crack and holes called potholes. These road surface irregularities often elongate travel time. In this paper, a second-order macroscopic traffic model is therefore proposed to account for these road surface irregularities that affect the smooth flow of vehicular traffic. Though potholes do vary in shape and size, for simplicity the paper assumes that all potholes have conic resemblances. The impact of different sized potholes on driving is experimented using fundamental diagrams. Besides, the width of these holes, driver reaction time amid these irregularities also determine the intensity of the flow rate and vehicular speed. Moreover, a local cluster analysis is performed to determine the effect of a small disturbance on flow. The results revealed that the magnitude of amplification on a road surface with larger cracks is not as severe as roads with smaller size holes, except at minimal and jam density where all amplifications quickly fade out.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling road surface potholes within the macroscopic flow framework\",\"authors\":\"Gabriel Obed Fosu, J. Opong, B. E. Owusu, S. Naandam\",\"doi\":\"10.5206/mase/14625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continual wearing of road surfaces results to crack and holes called potholes. These road surface irregularities often elongate travel time. In this paper, a second-order macroscopic traffic model is therefore proposed to account for these road surface irregularities that affect the smooth flow of vehicular traffic. Though potholes do vary in shape and size, for simplicity the paper assumes that all potholes have conic resemblances. The impact of different sized potholes on driving is experimented using fundamental diagrams. Besides, the width of these holes, driver reaction time amid these irregularities also determine the intensity of the flow rate and vehicular speed. Moreover, a local cluster analysis is performed to determine the effect of a small disturbance on flow. The results revealed that the magnitude of amplification on a road surface with larger cracks is not as severe as roads with smaller size holes, except at minimal and jam density where all amplifications quickly fade out.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/14625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/14625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

路面的持续磨损导致裂缝和洞称为坑洞。这些凹凸不平的路面常常延长旅行时间。因此,本文提出了一个二阶宏观交通模型来解释这些影响车辆交通顺畅的路面不规则性。虽然坑洞的形状和大小各不相同,但为了简单起见,本文假设所有坑洞都具有圆锥相似性。用基本图试验了不同大小的坑穴对行车的影响。此外,这些孔洞的宽度和驾驶员在这些不规则情况下的反应时间也决定了流量的强度和车辆的速度。此外,还进行了局部聚类分析,以确定小扰动对流动的影响。结果表明,裂缝较大的路面上的放大幅度不如孔洞较小的路面严重,但在最小和堵塞密度下,所有放大都迅速消退。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling road surface potholes within the macroscopic flow framework
The continual wearing of road surfaces results to crack and holes called potholes. These road surface irregularities often elongate travel time. In this paper, a second-order macroscopic traffic model is therefore proposed to account for these road surface irregularities that affect the smooth flow of vehicular traffic. Though potholes do vary in shape and size, for simplicity the paper assumes that all potholes have conic resemblances. The impact of different sized potholes on driving is experimented using fundamental diagrams. Besides, the width of these holes, driver reaction time amid these irregularities also determine the intensity of the flow rate and vehicular speed. Moreover, a local cluster analysis is performed to determine the effect of a small disturbance on flow. The results revealed that the magnitude of amplification on a road surface with larger cracks is not as severe as roads with smaller size holes, except at minimal and jam density where all amplifications quickly fade out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信