基于Isbell拓扑和Scott拓扑的功能空间

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Xiaoquan Xu, Meng Bao, Xiaoyuan Zhang
{"title":"基于Isbell拓扑和Scott拓扑的功能空间","authors":"Xiaoquan Xu, Meng Bao, Xiaoyuan Zhang","doi":"10.1017/S0960129523000014","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we mainly study the function spaces related to H-sober spaces. For an irreducible subset system H and \n$T_{0}$\n spaces X and Y, it is proved that the following three conditions are equivalent: (1) the Scott space \n$\\Sigma \\mathcal O(X)$\n of the lattice of all open sets of X is H-sober; (2) for every H-sober space Y, the function space \n$\\mathbb{C}(X, Y)$\n of all continuous mappings from X to Y equipped with the Isbell topology is H-sober; (3) for every H-sober space Y, the Isbell topology on \n$\\mathbb{C}(X, Y)$\n has property S with respect to H. One immediate corollary is that for a \n$T_{0}$\n space X, Y is a d-space (resp., well-filtered space) iff the function space \n$\\mathbb{C}(X, Y)$\n equipped with the Isbell topology is a d-space (resp., well-filtered space). It is shown that for any \n$T_0$\n space X for which the Scott space \n$\\Sigma \\mathcal O(X)$\n is non-sober, the function space \n$\\mathbb{C}(X, \\Sigma 2)$\n equipped with the Isbell topology is not sober. The function spaces \n$\\mathbb{C}(X, Y)$\n equipped with the Scott topology, the compact-open topology and the pointwise convergence topology are also discussed. Our study also leads to a number of questions, whose answers will deepen our understanding of the function spaces related to H-sober spaces.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"32 1","pages":"1099 - 1116"},"PeriodicalIF":0.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On function spaces equipped with Isbell topology and Scott topology\",\"authors\":\"Xiaoquan Xu, Meng Bao, Xiaoyuan Zhang\",\"doi\":\"10.1017/S0960129523000014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we mainly study the function spaces related to H-sober spaces. For an irreducible subset system H and \\n$T_{0}$\\n spaces X and Y, it is proved that the following three conditions are equivalent: (1) the Scott space \\n$\\\\Sigma \\\\mathcal O(X)$\\n of the lattice of all open sets of X is H-sober; (2) for every H-sober space Y, the function space \\n$\\\\mathbb{C}(X, Y)$\\n of all continuous mappings from X to Y equipped with the Isbell topology is H-sober; (3) for every H-sober space Y, the Isbell topology on \\n$\\\\mathbb{C}(X, Y)$\\n has property S with respect to H. One immediate corollary is that for a \\n$T_{0}$\\n space X, Y is a d-space (resp., well-filtered space) iff the function space \\n$\\\\mathbb{C}(X, Y)$\\n equipped with the Isbell topology is a d-space (resp., well-filtered space). It is shown that for any \\n$T_0$\\n space X for which the Scott space \\n$\\\\Sigma \\\\mathcal O(X)$\\n is non-sober, the function space \\n$\\\\mathbb{C}(X, \\\\Sigma 2)$\\n equipped with the Isbell topology is not sober. The function spaces \\n$\\\\mathbb{C}(X, Y)$\\n equipped with the Scott topology, the compact-open topology and the pointwise convergence topology are also discussed. Our study also leads to a number of questions, whose answers will deepen our understanding of the function spaces related to H-sober spaces.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"32 1\",\"pages\":\"1099 - 1116\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S0960129523000014\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0960129523000014","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文主要研究与h -清醒空间相关的函数空间。对于不可约子集系统H和$T_{0}$空间X和Y,证明了下列三个条件是等价的:(1)X的所有开集的格的Scott空间$\Sigma \mathcal O(X)$是H-清醒的;(2)对于每一个H-sober空间Y,所有具有Isbell拓扑的从X到Y的连续映射的函数空间$\mathbb{C}(X, Y)$为H-sober;(3)对于每一个H-sober空间Y, $\mathbb{C}(X, Y)$上的Isbell拓扑对于h具有S的性质。一个直接推论是,对于$T_{0}$空间X, Y是一个d-空间(resp。如果具有Isbell拓扑的函数空间$\mathbb{C}(X, Y)$是一个d空间(如:(过滤良好的空间)。证明了对于Scott空间$\Sigma \mathcal O(X)$为非清醒的任意$T_0$空间X,具有Isbell拓扑的函数空间$\mathbb{C}(X, \Sigma 2)$是不清醒的。讨论了具有Scott拓扑、紧开拓扑和点向收敛拓扑的函数空间$\mathbb{C}(X, Y)$。我们的研究还引出了一些问题,这些问题的答案将加深我们对与h -清醒空间相关的函数空间的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On function spaces equipped with Isbell topology and Scott topology
Abstract In this paper, we mainly study the function spaces related to H-sober spaces. For an irreducible subset system H and $T_{0}$ spaces X and Y, it is proved that the following three conditions are equivalent: (1) the Scott space $\Sigma \mathcal O(X)$ of the lattice of all open sets of X is H-sober; (2) for every H-sober space Y, the function space $\mathbb{C}(X, Y)$ of all continuous mappings from X to Y equipped with the Isbell topology is H-sober; (3) for every H-sober space Y, the Isbell topology on $\mathbb{C}(X, Y)$ has property S with respect to H. One immediate corollary is that for a $T_{0}$ space X, Y is a d-space (resp., well-filtered space) iff the function space $\mathbb{C}(X, Y)$ equipped with the Isbell topology is a d-space (resp., well-filtered space). It is shown that for any $T_0$ space X for which the Scott space $\Sigma \mathcal O(X)$ is non-sober, the function space $\mathbb{C}(X, \Sigma 2)$ equipped with the Isbell topology is not sober. The function spaces $\mathbb{C}(X, Y)$ equipped with the Scott topology, the compact-open topology and the pointwise convergence topology are also discussed. Our study also leads to a number of questions, whose answers will deepen our understanding of the function spaces related to H-sober spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信