黎曼曲面上双曲Ricci-Bourguignon流的长期存在性

IF 0.3 Q4 MATHEMATICS
S. Azami, M. Mohammadi
{"title":"黎曼曲面上双曲Ricci-Bourguignon流的长期存在性","authors":"S. Azami, M. Mohammadi","doi":"10.22342/JIMS.26.2.856.202-212","DOIUrl":null,"url":null,"abstract":"We consider the hyperbolic Ricci-Bourguignon flow(HRBF) equation on Riemannian surfaces and we find a sufficient and necessary condition to this flow has global classical solution. Also, we show that the scalar curvature of the solution metric gij convergence to the flat curvature.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"26 1","pages":"202-212"},"PeriodicalIF":0.3000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long time existence of hyperbolic Ricci-Bourguignon flow on Riemannian Surfaces\",\"authors\":\"S. Azami, M. Mohammadi\",\"doi\":\"10.22342/JIMS.26.2.856.202-212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the hyperbolic Ricci-Bourguignon flow(HRBF) equation on Riemannian surfaces and we find a sufficient and necessary condition to this flow has global classical solution. Also, we show that the scalar curvature of the solution metric gij convergence to the flat curvature.\",\"PeriodicalId\":42206,\"journal\":{\"name\":\"Journal of the Indonesian Mathematical Society\",\"volume\":\"26 1\",\"pages\":\"202-212\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indonesian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22342/JIMS.26.2.856.202-212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/JIMS.26.2.856.202-212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑黎曼曲面上的双曲Ricci-Bourguignon流方程,得到了该流具有全局经典解的充要条件。同时,我们证明了解度规的标量曲率收敛于平面曲率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long time existence of hyperbolic Ricci-Bourguignon flow on Riemannian Surfaces
We consider the hyperbolic Ricci-Bourguignon flow(HRBF) equation on Riemannian surfaces and we find a sufficient and necessary condition to this flow has global classical solution. Also, we show that the scalar curvature of the solution metric gij convergence to the flat curvature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信