{"title":"一类连续时间状态空间模型对数似然梯度的无偏估计","authors":"M. Ballesio, A. Jasra","doi":"10.1515/mcma-2022-2105","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider static parameter estimation for a class of continuous-time state-space models. Our goal is to obtain an unbiased estimate of the gradient of the log-likelihood (score function), which is an estimate that is unbiased even if the stochastic processes involved in the model must be discretized in time. To achieve this goal, we apply a doubly randomized scheme, that involves a novel coupled conditional particle filter (CCPF) on the second level of randomization. Our novel estimate helps facilitate the application of gradient-based estimation algorithms, such as stochastic-gradient Langevin descent. We illustrate our methodology in the context of stochastic gradient descent (SGD) in several numerical examples and compare with the Rhee–Glynn estimator.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"61 - 83"},"PeriodicalIF":0.8000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unbiased estimation of the gradient of the log-likelihood for a class of continuous-time state-space models\",\"authors\":\"M. Ballesio, A. Jasra\",\"doi\":\"10.1515/mcma-2022-2105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider static parameter estimation for a class of continuous-time state-space models. Our goal is to obtain an unbiased estimate of the gradient of the log-likelihood (score function), which is an estimate that is unbiased even if the stochastic processes involved in the model must be discretized in time. To achieve this goal, we apply a doubly randomized scheme, that involves a novel coupled conditional particle filter (CCPF) on the second level of randomization. Our novel estimate helps facilitate the application of gradient-based estimation algorithms, such as stochastic-gradient Langevin descent. We illustrate our methodology in the context of stochastic gradient descent (SGD) in several numerical examples and compare with the Rhee–Glynn estimator.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"28 1\",\"pages\":\"61 - 83\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2022-2105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Unbiased estimation of the gradient of the log-likelihood for a class of continuous-time state-space models
Abstract In this paper, we consider static parameter estimation for a class of continuous-time state-space models. Our goal is to obtain an unbiased estimate of the gradient of the log-likelihood (score function), which is an estimate that is unbiased even if the stochastic processes involved in the model must be discretized in time. To achieve this goal, we apply a doubly randomized scheme, that involves a novel coupled conditional particle filter (CCPF) on the second level of randomization. Our novel estimate helps facilitate the application of gradient-based estimation algorithms, such as stochastic-gradient Langevin descent. We illustrate our methodology in the context of stochastic gradient descent (SGD) in several numerical examples and compare with the Rhee–Glynn estimator.