R. Yokomi, Jennifer K Delgado, T. Unruh, N. Bárcenas, S. F. Garczynski, S. Walse, A. A. Pérez de León, W. Cooper
{"title":"在系统方法下鉴定幼龄果蛾的分子进展以促进美国西部水果出口","authors":"R. Yokomi, Jennifer K Delgado, T. Unruh, N. Bárcenas, S. F. Garczynski, S. Walse, A. A. Pérez de León, W. Cooper","doi":"10.1093/aesa/saab040","DOIUrl":null,"url":null,"abstract":"Abstract Molecular advances facilitate fruit export by improving rapid pest diagnosis by polymerase chain reaction (PCR) and advanced sequencing technology. Improved pest detection provides timely certification of the quarantine pest-free status in the commodity being exported, avoiding unnecessary commodity treatment. The U.S.–Japan Systems Approach to export fresh cherries from the Western United States that targets the codling moth, Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae), is used as an example. Suspect codling moth larvae interdicted at cherry packing houses are distinguished by PCR from other internal fruit moth larvae such as the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae); lesser appleworm, G. prunivora (Walsh) (Lepidoptera: Tortricidae); cherry fruitworm, G. packardi (Zeller) (Lepidoptera: Tortricidae); and filbertworm, Cydia latiferreana (Walsingham) (Lepidoptera: Tortricidae). Identification is confirmed by sequencing the amplicon of a 301 bp region of the COI gene produced by PCR of the DNA from a suspect moth and comparing this sequence of COI gene sequences of other internal fruit feeders of pome fruit. This sequence comparison results in unambiguous pest identification. These findings are discussed in the context of systems approach research to meet evolving needs of phytosanitary requirements for global export of fruits.","PeriodicalId":8076,"journal":{"name":"Annals of The Entomological Society of America","volume":"115 1","pages":"105 - 112"},"PeriodicalIF":3.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Molecular Advances in Larval Fruit Moth Identification to Facilitate Fruit Export From Western United States Under Systems Approaches\",\"authors\":\"R. Yokomi, Jennifer K Delgado, T. Unruh, N. Bárcenas, S. F. Garczynski, S. Walse, A. A. Pérez de León, W. Cooper\",\"doi\":\"10.1093/aesa/saab040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Molecular advances facilitate fruit export by improving rapid pest diagnosis by polymerase chain reaction (PCR) and advanced sequencing technology. Improved pest detection provides timely certification of the quarantine pest-free status in the commodity being exported, avoiding unnecessary commodity treatment. The U.S.–Japan Systems Approach to export fresh cherries from the Western United States that targets the codling moth, Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae), is used as an example. Suspect codling moth larvae interdicted at cherry packing houses are distinguished by PCR from other internal fruit moth larvae such as the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae); lesser appleworm, G. prunivora (Walsh) (Lepidoptera: Tortricidae); cherry fruitworm, G. packardi (Zeller) (Lepidoptera: Tortricidae); and filbertworm, Cydia latiferreana (Walsingham) (Lepidoptera: Tortricidae). Identification is confirmed by sequencing the amplicon of a 301 bp region of the COI gene produced by PCR of the DNA from a suspect moth and comparing this sequence of COI gene sequences of other internal fruit feeders of pome fruit. This sequence comparison results in unambiguous pest identification. These findings are discussed in the context of systems approach research to meet evolving needs of phytosanitary requirements for global export of fruits.\",\"PeriodicalId\":8076,\"journal\":{\"name\":\"Annals of The Entomological Society of America\",\"volume\":\"115 1\",\"pages\":\"105 - 112\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of The Entomological Society of America\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/aesa/saab040\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of The Entomological Society of America","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/aesa/saab040","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Molecular Advances in Larval Fruit Moth Identification to Facilitate Fruit Export From Western United States Under Systems Approaches
Abstract Molecular advances facilitate fruit export by improving rapid pest diagnosis by polymerase chain reaction (PCR) and advanced sequencing technology. Improved pest detection provides timely certification of the quarantine pest-free status in the commodity being exported, avoiding unnecessary commodity treatment. The U.S.–Japan Systems Approach to export fresh cherries from the Western United States that targets the codling moth, Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae), is used as an example. Suspect codling moth larvae interdicted at cherry packing houses are distinguished by PCR from other internal fruit moth larvae such as the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae); lesser appleworm, G. prunivora (Walsh) (Lepidoptera: Tortricidae); cherry fruitworm, G. packardi (Zeller) (Lepidoptera: Tortricidae); and filbertworm, Cydia latiferreana (Walsingham) (Lepidoptera: Tortricidae). Identification is confirmed by sequencing the amplicon of a 301 bp region of the COI gene produced by PCR of the DNA from a suspect moth and comparing this sequence of COI gene sequences of other internal fruit feeders of pome fruit. This sequence comparison results in unambiguous pest identification. These findings are discussed in the context of systems approach research to meet evolving needs of phytosanitary requirements for global export of fruits.
期刊介绍:
The Annals of the Entomological Society of America exists to stimulate interdisciplinary dialogue across the entomological disciplines and to advance cooperative interaction among diverse groups of entomologists. It seeks to attract and publish cutting-edge research, reviews, collections of articles on a common topic of broad interest, and discussion of topics with national or international importance. We especially welcome articles covering developing areas of research, controversial issues or debate, and topics of importance to society. Manuscripts that are primarily reports of new species, methodology, pest management, or the biology of single species generally will be referred to other journals of the ESA. The most important criteria for acceptance are quality of work and breadth of interest to the readership.