无穷大集与一类亚椭圆算子无界域上的极大值原理

IF 0.2 Q4 MATHEMATICS
Stefano Biagi
{"title":"无穷大集与一类亚椭圆算子无界域上的极大值原理","authors":"Stefano Biagi","doi":"10.6092/ISSN.2240-2829/10364","DOIUrl":null,"url":null,"abstract":"Maximum Principles on unbounded domains play a crucial role in several problems related to linear second-order PDEs of elliptic and parabolic type. In the present notes, based on a joint work with prof. E. Lanconelli, we consider a class of sub-elliptic operators L in R^N and we establish some criteria for an unbounded open set to be a Maximum Principle set for L. We extend some classical results related to the Laplacian(proved by Deny, Hayman and Kennedy) and to the sub-Laplacians on homogeneous Carnot groups (proved by Bonfiglioli and Lanconelli).","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"10 1","pages":"83-97"},"PeriodicalIF":0.2000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large sets at infinity and Maximum Principle on unbounded domains for a class of sub-elliptic operators\",\"authors\":\"Stefano Biagi\",\"doi\":\"10.6092/ISSN.2240-2829/10364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum Principles on unbounded domains play a crucial role in several problems related to linear second-order PDEs of elliptic and parabolic type. In the present notes, based on a joint work with prof. E. Lanconelli, we consider a class of sub-elliptic operators L in R^N and we establish some criteria for an unbounded open set to be a Maximum Principle set for L. We extend some classical results related to the Laplacian(proved by Deny, Hayman and Kennedy) and to the sub-Laplacians on homogeneous Carnot groups (proved by Bonfiglioli and Lanconelli).\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"10 1\",\"pages\":\"83-97\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/10364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/10364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

无界域上的极大值原理在与椭圆型和抛物型线性二阶偏微分方程有关的几个问题中起着至关重要的作用。在本文中,基于与Lanconelli教授的共同工作,我们考虑了R^N中的一类次椭圆算子L,并建立了无界开集为L的最大原理集的一些准则。我们推广了一些与拉普拉斯算子有关的经典结果(由Deny、Hayman和Kennedy证明)和与齐次卡诺群上的次拉普拉斯算子有关(由Bonfiglioli和Lanconelli证明)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large sets at infinity and Maximum Principle on unbounded domains for a class of sub-elliptic operators
Maximum Principles on unbounded domains play a crucial role in several problems related to linear second-order PDEs of elliptic and parabolic type. In the present notes, based on a joint work with prof. E. Lanconelli, we consider a class of sub-elliptic operators L in R^N and we establish some criteria for an unbounded open set to be a Maximum Principle set for L. We extend some classical results related to the Laplacian(proved by Deny, Hayman and Kennedy) and to the sub-Laplacians on homogeneous Carnot groups (proved by Bonfiglioli and Lanconelli).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信