用于液相氟化的聚乙二醇在全氟十氢萘中的分散

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY
A. Andreev, N. Belov, V. Makarova, G. Shandryuk, D. Bryankin, D. S. Pashkevich, A. Alentiev
{"title":"用于液相氟化的聚乙二醇在全氟十氢萘中的分散","authors":"A. Andreev, N. Belov, V. Makarova, G. Shandryuk, D. Bryankin, D. S. Pashkevich, A. Alentiev","doi":"10.18321/ectj1439","DOIUrl":null,"url":null,"abstract":"This work aims to obtain the dispersions based on polyethylene glycols (PEGs) of various molecular masses (MM) and perfluorodecalin (PFD) for subsequent direct fluorination. The solubility of the components was estimated using laser interferometry and differential scanning calorimetry, and it was shown that PEGs with different MM are not highly compatible with PFD. The dispersions were prepared during sonication. Gel permeation chromatography (GPC) analysis indicated that MMs almost did not change in this process. While the sonication of PEG-PFD, there is a formation of dispersion with the particle sizes distribution in a range of 0.4‒2 μm depending on the MM of PEG. The dispersion is metastable for several hours, even though its stability was significantly affected by additional bubbling with the gas flow. Moreover, the dispersions with a solid PEG phase (MM > 600 Da) were subjected to a smaller change compared to a liquid one (MM < 600 Da). The results of this research shed light on the applicability of the ultrasonic preparation of PEGs in PFD for liquid-phase fluorination with obtaining perfluorinated polyether of target MM.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion of Polyethylene Glycol in Perfluorodecalin for Liquid Phase Fluorination\",\"authors\":\"A. Andreev, N. Belov, V. Makarova, G. Shandryuk, D. Bryankin, D. S. Pashkevich, A. Alentiev\",\"doi\":\"10.18321/ectj1439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to obtain the dispersions based on polyethylene glycols (PEGs) of various molecular masses (MM) and perfluorodecalin (PFD) for subsequent direct fluorination. The solubility of the components was estimated using laser interferometry and differential scanning calorimetry, and it was shown that PEGs with different MM are not highly compatible with PFD. The dispersions were prepared during sonication. Gel permeation chromatography (GPC) analysis indicated that MMs almost did not change in this process. While the sonication of PEG-PFD, there is a formation of dispersion with the particle sizes distribution in a range of 0.4‒2 μm depending on the MM of PEG. The dispersion is metastable for several hours, even though its stability was significantly affected by additional bubbling with the gas flow. Moreover, the dispersions with a solid PEG phase (MM > 600 Da) were subjected to a smaller change compared to a liquid one (MM < 600 Da). The results of this research shed light on the applicability of the ultrasonic preparation of PEGs in PFD for liquid-phase fluorination with obtaining perfluorinated polyether of target MM.\",\"PeriodicalId\":11795,\"journal\":{\"name\":\"Eurasian Chemico-Technological Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Chemico-Technological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18321/ectj1439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本工作旨在获得基于各种分子量的聚乙二醇(PEG)和全氟代杯(PFD)的分散体,用于随后的直接氟化。使用激光干涉测量法和差示扫描量热法估计了组分的溶解度,结果表明,具有不同MM的PEG与PFD的相容性不高。分散体是在超声处理过程中制备的。凝胶渗透色谱(GPC)分析表明,MM在该过程中几乎没有变化。在对PEG-PFD进行超声处理时,根据PEG的MM,形成了粒径分布在0.4-2μm范围内的分散体。分散体在几个小时内是亚稳的,尽管其稳定性受到气流额外鼓泡的显著影响。此外,与液体分散体(MM<600Da)相比,具有固体PEG相(MM>600Da。本研究的结果阐明了在PFD中超声制备PEG用于液相氟化的适用性,并获得了目标MM的全氟聚醚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dispersion of Polyethylene Glycol in Perfluorodecalin for Liquid Phase Fluorination
This work aims to obtain the dispersions based on polyethylene glycols (PEGs) of various molecular masses (MM) and perfluorodecalin (PFD) for subsequent direct fluorination. The solubility of the components was estimated using laser interferometry and differential scanning calorimetry, and it was shown that PEGs with different MM are not highly compatible with PFD. The dispersions were prepared during sonication. Gel permeation chromatography (GPC) analysis indicated that MMs almost did not change in this process. While the sonication of PEG-PFD, there is a formation of dispersion with the particle sizes distribution in a range of 0.4‒2 μm depending on the MM of PEG. The dispersion is metastable for several hours, even though its stability was significantly affected by additional bubbling with the gas flow. Moreover, the dispersions with a solid PEG phase (MM > 600 Da) were subjected to a smaller change compared to a liquid one (MM < 600 Da). The results of this research shed light on the applicability of the ultrasonic preparation of PEGs in PFD for liquid-phase fluorination with obtaining perfluorinated polyether of target MM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasian Chemico-Technological Journal
Eurasian Chemico-Technological Journal CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
20.00%
发文量
6
审稿时长
20 weeks
期刊介绍: The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信