参数各向异性Neumann(p,q)-方程的全局多重性

Pub Date : 2023-02-26 DOI:10.12775/TMNA.2022.010
Nikolaos S. Papageorgiou, Vicentiu D. Rădulescu, Dušan D. Repovš
{"title":"参数各向异性Neumann(p,q)-方程的全局多重性","authors":"Nikolaos S. Papageorgiou, Vicentiu D. Rădulescu, Dušan D. Repovš","doi":"10.12775/TMNA.2022.010","DOIUrl":null,"url":null,"abstract":"We consider a Neumann boundary value problem driven by the anisotropic\n $(p,q)$-Laplacian plus a parametric potential term. \nThe reaction is ``superlinear\". We prove a global (with respect to the parameter) multiplicity result for positive solutions. \nAlso, we show the existence of a minimal positive solution and finally, we produce\n a nodal solution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global multiplicity for parametric anisotropic Neumann (p,q)-equations\",\"authors\":\"Nikolaos S. Papageorgiou, Vicentiu D. Rădulescu, Dušan D. Repovš\",\"doi\":\"10.12775/TMNA.2022.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Neumann boundary value problem driven by the anisotropic\\n $(p,q)$-Laplacian plus a parametric potential term. \\nThe reaction is ``superlinear\\\". We prove a global (with respect to the parameter) multiplicity result for positive solutions. \\nAlso, we show the existence of a minimal positive solution and finally, we produce\\n a nodal solution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/TMNA.2022.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/TMNA.2022.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个由各向异性$(p,q)$-拉普拉斯算子和一个参数势项驱动的Neumann边值问题。该反应是“超线性”的。我们证明了正解的全局(相对于参数)多重性结果。此外,我们还证明了极小正解的存在性,最后,我们得到了节点解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global multiplicity for parametric anisotropic Neumann (p,q)-equations
We consider a Neumann boundary value problem driven by the anisotropic $(p,q)$-Laplacian plus a parametric potential term. The reaction is ``superlinear". We prove a global (with respect to the parameter) multiplicity result for positive solutions. Also, we show the existence of a minimal positive solution and finally, we produce a nodal solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信