Nikolaos S. Papageorgiou, Vicentiu D. Rădulescu, Dušan D. Repovš
{"title":"参数各向异性Neumann(p,q)-方程的全局多重性","authors":"Nikolaos S. Papageorgiou, Vicentiu D. Rădulescu, Dušan D. Repovš","doi":"10.12775/TMNA.2022.010","DOIUrl":null,"url":null,"abstract":"We consider a Neumann boundary value problem driven by the anisotropic\n $(p,q)$-Laplacian plus a parametric potential term. \nThe reaction is ``superlinear\". We prove a global (with respect to the parameter) multiplicity result for positive solutions. \nAlso, we show the existence of a minimal positive solution and finally, we produce\n a nodal solution.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global multiplicity for parametric anisotropic Neumann (p,q)-equations\",\"authors\":\"Nikolaos S. Papageorgiou, Vicentiu D. Rădulescu, Dušan D. Repovš\",\"doi\":\"10.12775/TMNA.2022.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Neumann boundary value problem driven by the anisotropic\\n $(p,q)$-Laplacian plus a parametric potential term. \\nThe reaction is ``superlinear\\\". We prove a global (with respect to the parameter) multiplicity result for positive solutions. \\nAlso, we show the existence of a minimal positive solution and finally, we produce\\n a nodal solution.\",\"PeriodicalId\":23130,\"journal\":{\"name\":\"Topological Methods in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Methods in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/TMNA.2022.010\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/TMNA.2022.010","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global multiplicity for parametric anisotropic Neumann (p,q)-equations
We consider a Neumann boundary value problem driven by the anisotropic
$(p,q)$-Laplacian plus a parametric potential term.
The reaction is ``superlinear". We prove a global (with respect to the parameter) multiplicity result for positive solutions.
Also, we show the existence of a minimal positive solution and finally, we produce
a nodal solution.
期刊介绍:
Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.