欧氏空间上的对称TALAGRAND不等式

Pub Date : 2020-04-26 DOI:10.2206/kyushujm.76.119
Hiroshi Tsuji
{"title":"欧氏空间上的对称TALAGRAND不等式","authors":"Hiroshi Tsuji","doi":"10.2206/kyushujm.76.119","DOIUrl":null,"url":null,"abstract":"In this paper, we study the symmetrized Talagrand inequality that was proved by Fathi and has a connection with the Blaschke-Santalo inequality in convex geometry. As corollaries of our results, we have several refined functional inequalities under some conditions. We also give an alternative proof of Fathi's symmetrized Talagrand inequality on the real line and some applications.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"SYMMETRIZED TALAGRAND INEQUALITIES ON EUCLIDEAN SPACES\",\"authors\":\"Hiroshi Tsuji\",\"doi\":\"10.2206/kyushujm.76.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the symmetrized Talagrand inequality that was proved by Fathi and has a connection with the Blaschke-Santalo inequality in convex geometry. As corollaries of our results, we have several refined functional inequalities under some conditions. We also give an alternative proof of Fathi's symmetrized Talagrand inequality on the real line and some applications.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.76.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了由Fathi证明的对称Talagrand不等式,它与凸几何中的Blaschke-Santalo不等式有关。作为我们结果的推论,我们在某些条件下得到了几个精化的泛函不等式。我们还给出了Fathi在实线上的对称Talagrand不等式的另一个证明和一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
SYMMETRIZED TALAGRAND INEQUALITIES ON EUCLIDEAN SPACES
In this paper, we study the symmetrized Talagrand inequality that was proved by Fathi and has a connection with the Blaschke-Santalo inequality in convex geometry. As corollaries of our results, we have several refined functional inequalities under some conditions. We also give an alternative proof of Fathi's symmetrized Talagrand inequality on the real line and some applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信