Zeli̇ha Erpehli̇van, H. Kocayiğit, Tuba Ağirman Aydin
{"title":"r2 ^4中类时螺旋的一些积分刻画","authors":"Zeli̇ha Erpehli̇van, H. Kocayiğit, Tuba Ağirman Aydin","doi":"10.46939/j.sci.arts-22.3-a02","DOIUrl":null,"url":null,"abstract":"In this study, we examine timelike helices in R2^4 and some integral characterizations of these curves in terms of Frenet frame. In addition, we study timelike B2 slant helices in R2^4 and present the differential equations for vector positions.","PeriodicalId":54169,"journal":{"name":"Journal of Science and Arts","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOME INTEGRAL CHARACTERIZATIONS OF TIMELIKE HELICES IN R2^4\",\"authors\":\"Zeli̇ha Erpehli̇van, H. Kocayiğit, Tuba Ağirman Aydin\",\"doi\":\"10.46939/j.sci.arts-22.3-a02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we examine timelike helices in R2^4 and some integral characterizations of these curves in terms of Frenet frame. In addition, we study timelike B2 slant helices in R2^4 and present the differential equations for vector positions.\",\"PeriodicalId\":54169,\"journal\":{\"name\":\"Journal of Science and Arts\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46939/j.sci.arts-22.3-a02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46939/j.sci.arts-22.3-a02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
SOME INTEGRAL CHARACTERIZATIONS OF TIMELIKE HELICES IN R2^4
In this study, we examine timelike helices in R2^4 and some integral characterizations of these curves in terms of Frenet frame. In addition, we study timelike B2 slant helices in R2^4 and present the differential equations for vector positions.