Mei Yu, Kun Zhu, Mankun Zhao, Jian Yu, Tianyi Xu, Di Jin, Xuewei Li, Ruiguo Yu
{"title":"学习用户-项目交互图上的邻居用户意图以获得更好的顺序推荐","authors":"Mei Yu, Kun Zhu, Mankun Zhao, Jian Yu, Tianyi Xu, Di Jin, Xuewei Li, Ruiguo Yu","doi":"10.1145/3580520","DOIUrl":null,"url":null,"abstract":"The task of Sequential Recommendation aims to predict the user’s preference by analyzing the user’s historical behaviours. Existing methods model item transitions through leveraging sequential patterns. However, they mainly consider the target user’s own behaviours and dynamic characteristics, while often ignore the high-order collaborative connections when modelling user preferences. Some recent works try to use graph-based methods to introduce high-order collaborative signals for Sequential Recommendation, but they have two main problems. One is that the sequential patterns cannot be effectively mined, and the other is that their way of introducing high-order collaborative signals is not very suitable for Sequential Recommendation. To address these problems, we propose to fully exploit sequence features and model high-order collaborative signals for Sequential Recommendation. We propose a Neighbor user Intention based Sequential Recommender, namely NISRec, which utilizes the intentions of high-order connected neighbor users as high-order collaborative signals, in order to improve recommendation performance for the target user. To be specific, NISRec contains two main modules: the neighbor user intention embedding module (NIE) and the fusion module. The NIE describes both the long-term and the short-term intentions of neighbor users and aggregates them separately. The fusion module uses these two types of aggregated intentions to model high-order collaborative signals in both the embedding process and the user preference modelling phase for recommendation of the target user. Experimental results show that our new approach outperforms the state-of-the-art methods on both sparse and dense datasets. Extensive studies further show the effectiveness of the diverse neighbor intentions introduced by NISRec.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Neighbor User Intention on User-Item Interaction Graphs for Better Sequential Recommendation\",\"authors\":\"Mei Yu, Kun Zhu, Mankun Zhao, Jian Yu, Tianyi Xu, Di Jin, Xuewei Li, Ruiguo Yu\",\"doi\":\"10.1145/3580520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of Sequential Recommendation aims to predict the user’s preference by analyzing the user’s historical behaviours. Existing methods model item transitions through leveraging sequential patterns. However, they mainly consider the target user’s own behaviours and dynamic characteristics, while often ignore the high-order collaborative connections when modelling user preferences. Some recent works try to use graph-based methods to introduce high-order collaborative signals for Sequential Recommendation, but they have two main problems. One is that the sequential patterns cannot be effectively mined, and the other is that their way of introducing high-order collaborative signals is not very suitable for Sequential Recommendation. To address these problems, we propose to fully exploit sequence features and model high-order collaborative signals for Sequential Recommendation. We propose a Neighbor user Intention based Sequential Recommender, namely NISRec, which utilizes the intentions of high-order connected neighbor users as high-order collaborative signals, in order to improve recommendation performance for the target user. To be specific, NISRec contains two main modules: the neighbor user intention embedding module (NIE) and the fusion module. The NIE describes both the long-term and the short-term intentions of neighbor users and aggregates them separately. The fusion module uses these two types of aggregated intentions to model high-order collaborative signals in both the embedding process and the user preference modelling phase for recommendation of the target user. Experimental results show that our new approach outperforms the state-of-the-art methods on both sparse and dense datasets. Extensive studies further show the effectiveness of the diverse neighbor intentions introduced by NISRec.\",\"PeriodicalId\":50940,\"journal\":{\"name\":\"ACM Transactions on the Web\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on the Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3580520\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3580520","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Learning Neighbor User Intention on User-Item Interaction Graphs for Better Sequential Recommendation
The task of Sequential Recommendation aims to predict the user’s preference by analyzing the user’s historical behaviours. Existing methods model item transitions through leveraging sequential patterns. However, they mainly consider the target user’s own behaviours and dynamic characteristics, while often ignore the high-order collaborative connections when modelling user preferences. Some recent works try to use graph-based methods to introduce high-order collaborative signals for Sequential Recommendation, but they have two main problems. One is that the sequential patterns cannot be effectively mined, and the other is that their way of introducing high-order collaborative signals is not very suitable for Sequential Recommendation. To address these problems, we propose to fully exploit sequence features and model high-order collaborative signals for Sequential Recommendation. We propose a Neighbor user Intention based Sequential Recommender, namely NISRec, which utilizes the intentions of high-order connected neighbor users as high-order collaborative signals, in order to improve recommendation performance for the target user. To be specific, NISRec contains two main modules: the neighbor user intention embedding module (NIE) and the fusion module. The NIE describes both the long-term and the short-term intentions of neighbor users and aggregates them separately. The fusion module uses these two types of aggregated intentions to model high-order collaborative signals in both the embedding process and the user preference modelling phase for recommendation of the target user. Experimental results show that our new approach outperforms the state-of-the-art methods on both sparse and dense datasets. Extensive studies further show the effectiveness of the diverse neighbor intentions introduced by NISRec.
期刊介绍:
Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML.
In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces.
Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.